Biology & Philosophy

, Volume 30, Issue 1, pp 99–117 | Cite as

Informationally-connected property clusters, and polymorphism

  • Manolo MartínezEmail author


I present and defend a novel version of the homeostatic property cluster (HPC) account of natural kinds. The core of the proposal is a development of the notion of co-occurrence, central to the HPC account, along information-theoretic lines. The resulting theory retains all the appealing features of the original formulation, while increasing its explanatory power, and formal perspicuity. I showcase the theory by applying it to the (hitherto unsatisfactorily resolved) problem of reconciling the thesis that biological species are natural kinds with the fact that many such species are polymorphic.


Homeostatic property clusters Species Polymorphism Richard Boyd Information theory 



I am grateful to Marc Ereshefsky, P.D. Magnus, Kim Sterelny and three anonymous reviewers for helpful comments on earlier drafts.


Research for this paper was supported by the Spanish Government via research grants MCINN FFI2011-26853 and CSD2009-0056 (CONSOLIDER INGENIO).


  1. Anderson KE, Linksvayer TA, Smith CR (2008) The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae). Myrmecol News 11:119–132Google Scholar
  2. Assis L (2009) Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics 25(5):528–544Google Scholar
  3. Assis L, Brigandt I (2009) Homology: homeostatic property cluster kinds in systematics and evolution. Evol Biol 36(2):248–255Google Scholar
  4. Bond AB, Kamil AC (1998) Apostatic selection by blue jays produces balanced polymorphism in virtual prey. Nature 395:594–596CrossRefGoogle Scholar
  5. Boyd R (1988) How to be a moral realist. In: Sayre-McCord G (ed) Moral realism. Cornell University Press, New York, pp 181–228Google Scholar
  6. Boyd R (1991) Realism, anti-foundationalism and the enthusiasm for natural kinds. Philos Stud 61(1–2):127–148CrossRefGoogle Scholar
  7. Boyd R (1999) Homeostasis, species, and higher taxa. In: Wilson R (ed) Species: new interdisciplinary essays. Mit Press, Cambridge, pp 141–185Google Scholar
  8. Dretske F (1981) Knowledge and the low of information. The MIT Press, CambridgeGoogle Scholar
  9. Ereshefsky M, Matthen M (2005) Taxonomy polymorphism, and history: an introduction to population structure theory. Philos Sci 72:1–21CrossRefGoogle Scholar
  10. Franz NM (2005) Outline of an explanatory account of cladistic practice. Biol Philos 20(2–3):489–515Google Scholar
  11. Godfrey-Smith P (2013) Darwinian individuals. In: Bouchard F, Huneman P (eds) From groups to individuals: evolution and emerging individuality. The MIT Press, Cambridge, pp 17–36Google Scholar
  12. Joron M, Mallet JLB (1998) Diversity in mimicry: paradox or paradigm? Trends Ecol Evol 13(2):461–466CrossRefGoogle Scholar
  13. Jousselin E, Desdevises Y, d’Acier AC (2009) Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationship in aphids. Proc R Soc B 276:187–196Google Scholar
  14. Keller R, Boyd R, Wheeler Q (2003) The illogical basis of phylogenetic nomenclature. Botanical Rev 69(1):93–110Google Scholar
  15. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86CrossRefGoogle Scholar
  16. Ladyman J, Ross D, Spurret D, Collier J (2007) Every thing must go. Oxford University Press, OxfordCrossRefGoogle Scholar
  17. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLOS Pathog 5(3)Google Scholar
  18. Magnus PD (2011) Drakes, seadevils, and similarity fetishism. Biol Philos 26(6):857–870CrossRefGoogle Scholar
  19. Matthen M (2009) Chicken, eggs, and speciation. Noûs 43(1):94–115CrossRefGoogle Scholar
  20. Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5(1):9–18CrossRefGoogle Scholar
  21. Nowak MA (2006) Evolutionary dynamics. Harvard University Press, CambridgeGoogle Scholar
  22. Okasha S (2002) Darwinian metaphysics: species and the question of essentialism. Synthese 131(2):191–213CrossRefGoogle Scholar
  23. Rieppel O (2005) Monophyly, paraphyly, and natural kinds. Biol Philos 20(2–3):465–487Google Scholar
  24. Shannon C (1948) A mathematical theory of communication. Bell Syst Math J 27(379–423):623–656CrossRefGoogle Scholar
  25. Skyrms B (2010) Signals: evolution, learning and information. Oxford University Press, New YorkCrossRefGoogle Scholar
  26. Tanaka S (2006) Phase-related body-color polyphenism in hatchlings of the desert locust, schistocerca gregaria: re-examination of the maternal and crowding effects. J Insect Physiol 52:1054–1061CrossRefGoogle Scholar
  27. Williams NE (2011) Arthritis and Nature’s joints. In: Campbell JK, O’Rourke M, Slater MH (eds) Carving nature at its joints. The MIT Press, Cambridge, pp 199–230Google Scholar
  28. Williams T, Carroll S (2009) Genetic and Molecular Insights into the Development and Evolution of Sexual Dimorphism. Nat Rev Genet 10(11):797–804CrossRefGoogle Scholar
  29. Wilson R (1999) Realism, essence, and kind: resuscitating species essentialism? In: Wilson R (ed) Species: new interdisciplinary essays. Mit Press, Cambridge, pp 187–208Google Scholar
  30. Wilson R, Barker M, Brigandt I (2007) When traditional essentialism fails: biological natural kinds. Philos Top 35(1–2):189–215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.LOGOS – Logic, Language and Cognition Research GroupUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain

Personalised recommendations