Biology & Philosophy

, Volume 29, Issue 5, pp 731–745 | Cite as

A critique of the principle of cognitive simplicity in comparative cognition

  • Irina Meketa


A widespread assumption in experimental comparative (animal) cognition is that, barring compelling evidence to the contrary, the default hypothesis should postulate the simplest cognitive ontology (mechanism, process, or structure) consistent with the animal’s behavior. I call this assumption the principle of cognitive simplicity (PoCS). In this essay, I show that PoCS is pervasive but unjustified: a blanket preference for the simplest cognitive ontology is not justified by any of the available arguments. Moreover, without a clear sense of how cognitive ontologies are to be carved up at the joints—and which tools are appropriate for the job—PoCS rests on shaky conceptual ground.


Comparative cognition Parsimony Complexity Animal cognition Cognitive evolution 


  1. Buckner C (2011) Two approaches to the distinction between cognition and ‘mere association’. Int J Comp Psychol 24:314–348Google Scholar
  2. Buckner C (2013) Morgan’s Canon, meet Hume’s Dictum: avoiding anthropofabulation in cross-species comparisons. Biol Philos 28:853–871Google Scholar
  3. Carruthers P (2008) Meta-cognition in animals: a skeptical look. Mind Lang 23:58–89CrossRefGoogle Scholar
  4. Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–278CrossRefGoogle Scholar
  5. Clayton NS, Griffiths DP, Emery NJ, Dickinson A (2001) Elements of episodic-like memory in animals. Philos Trans R Soc Biol 356:1483–1491. doi: 10.1098/rstb.2001.0947 CrossRefGoogle Scholar
  6. Conway MS (2003) Life’s solution: inevitable humans in a lonely universe. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Cruse H, Wehner R (2011) No need for a cognitive map: decentralized memory for insect navigation. Public Libr Sci Comput Biol 7:e1002009. doi: 10.1371/journal.pcbi.1002009 Google Scholar
  8. Crystal JD, Foote AL (2009) Metacognition in animals. Comp Cogn Behav 4:1–16Google Scholar
  9. Dally JM, Emery NJ, Clayton NS (2006) Food-Caching western scrub-jays keep track of who was watching when. Science 16:1662–1665. doi: 10.1126/science.1126539 CrossRefGoogle Scholar
  10. de Waal FBM, Ferrari PF (2010) Towards a bottom-up perspective on animal and human cognition. Trends Cogn Sci 14:201–207Google Scholar
  11. Dickinson A (2012) Associative learning and animal cognition. Philos Trans R Soc Biol Sci 367:2733–2743. doi: 10.1098/rstb.2012.0220 CrossRefGoogle Scholar
  12. Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. PNAS 109:16974–16979CrossRefGoogle Scholar
  13. Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907CrossRefGoogle Scholar
  14. Fitzpatrick S (2008) Doing away with Morgan’s Canon. Mind Lang 23:224–246Google Scholar
  15. Foote AL, Crystal JD (2007) Metacognition in the rat. Curr Biol 17:551–555CrossRefGoogle Scholar
  16. Foote AL, Crystal JD (2012) Play it again: a new method for testing metacognition in animals. Anim Cogn 15:187–199CrossRefGoogle Scholar
  17. Gallistel CR (2008) Learning and representation. In: Menzel R, Byrne J (eds) Learning and memory: a comprehensive reference. Elsevier, New York, pp 227–242Google Scholar
  18. Güntürkün O (2012) The convergent evolution of neural substrates for cognition. Psychol Resour 76:212–219. doi: 10.1007/s00426-011-0377-9 CrossRefGoogle Scholar
  19. Heyes C (2012) Simple minds: a qualified defense of associative learning. Philos Trans R Soc Biol Sci 367:2695–2703CrossRefGoogle Scholar
  20. Karin-D’Arcy MR (2005) The modern role of Morgan’s canon in comparative psychology. Int J Comp Psychol 18:179–201Google Scholar
  21. Le Pelley ME (2012) Metacognitive monkeys or associative animals simple reinforcement learning explains uncertainty in nonhuman animals. J Exp Psychol Learn Mem Cogn 38:686–708. doi:10.1037.a0026478Google Scholar
  22. Mameli M, Bortolotti L (2006) Animal rights, animal minds, and human mindreading. J Med Ethics 32:84–89CrossRefGoogle Scholar
  23. Morgan LC (1894) An introduction to comparative psychology. Scribner’s, New YorkCrossRefGoogle Scholar
  24. Pitt D (2012) Mental representation. In: Edward N. Zalta (ed) The Stanford Encyclopedia of philosophy (Winter 2012 Edition).
  25. Povinelli DJ, Barth J (2005) Reinterpreting behavior: a human specialization? Behav Brain Sci 28:712–713CrossRefGoogle Scholar
  26. Powell R, Shea N (forthcoming) Homology across inheritance systems. Biol PhilosGoogle Scholar
  27. Shettleworth SJ (2009) Cognition, evolution, and behavior: edition II. Oxford University Press, OxfordGoogle Scholar
  28. Shettleworth SJ (2012) Modularity, comparative cognition and human uniqueness. Philos Trans R Soc Biol Sci 367:2794–2802. doi: 10.1098/rstb.2012.0211 CrossRefGoogle Scholar
  29. Shettleworth SJ (2013) Fundamentals of comparative cognition. Oxford University Press, New YorkGoogle Scholar
  30. Smith JD, Beran MJ, Couchman JJ, Coutinho MVC (2008) The comparative study of metacognition: sharper paradigms, safer inferences. Psychon Bull Rev 15:679–691Google Scholar
  31. Sober E (2005) Comparative psychology meets evolutionary biology: Morgan’s canon and cladistic parsimony. In: Daston L, Mitman G (eds) Thinking with animals: new perspectives on anthropomorphism. Columbia University Press, New York, pp 85–99Google Scholar
  32. Taylor AH, Knaebe B, Gray RD (2012) An end to insight? New Caledonian crows can spontaneously solve problems without planning their actions. Proc Royal Soc B Biol Sci 279(1749):4977–4981Google Scholar
  33. Thomas RK (2001) Lloyd Morgan’s cannon: a history of misrepresentation.
  34. van der Vaart E, Verbrugge R, Hemelrijk CK (2012) Corvid re-caching without ‘theory of mind’: a model. Public Libr Sci Online 7(3):e32904. doi: 10.1371/journal.pone.0032904 Google Scholar
  35. Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–479CrossRefGoogle Scholar
  36. Wimpenny JH, Weir AAS, Clayton L, Rutz C, Kacelnik A (2009) Cognitive processes associated with sequential tool use in new Caledonian crows. Public Libr Sci Online 4:6471Google Scholar
  37. Zentall TR (2001) The case for a cognitive approach to animal learning and behavior. Behav Process 54:65–78CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhilosophyBoston UniversityBostonUSA

Personalised recommendations