Biology & Philosophy

, Volume 29, Issue 6, pp 833–850 | Cite as

The phylogeography debate and the epistemology of model-based evolutionary biology

  • Alfonso Arroyo-Santos
  • Mark E. Olson
  • Francisco Vergara-Silva


Phylogeography, a relatively new subdicipline of evolutionary biology that attempts to unify the fields of phylogenetics and population biology in an explicit geographical context, has hosted in recent years a highly polarized debate related to the purported benefits and limitations that qualitative versus quantitative methods might contribute or impose on inferential processes in evolutionary biology. Here we present a friendly, non-technical introduction to the conflicting methods underlying the controversy, and exemplify it with a balanced selection of quotes from the primary biological literature, to invite the philosophy of biology community to pay attention to the elements that have played a primary role in its presumed resolution. We also present the basic features of our own metascientific take on the debate, and point out—as a preliminary step in preparation for upcoming, more detailed treatments—the importance that appeals to authority in fields external to phylogeography per se have played in the current status of this highly visible evolutionary biology dispute.


Phylogeography Scientific controversies Evolutionary biology Popperianism Statistical approaches Borrowed epistemic credibility 


  1. Aldrich J (2002) How likelihood and identification Went Bayesian. Int Stat 70:79–98CrossRefGoogle Scholar
  2. Aldrich J (2008) R. A. Fisher on Bayes and Bayes’ Theorem. Bayesian Anal 3:161–170CrossRefGoogle Scholar
  3. Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62–76CrossRefGoogle Scholar
  4. Avise JC (1998) The history and purview of phylogeography: a personal reflection. Mol Ecol 7:371–379CrossRefGoogle Scholar
  5. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  6. Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36:3–15CrossRefGoogle Scholar
  7. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  8. Beard DA, Kushmerick MJ (2009) Strong inference for systems biology. PLoS Comput Biol 5(8):e1000459CrossRefGoogle Scholar
  9. Beaumont M, Panchal M (2008) On the validity of nested clade phylogeographical analysis. Mol Ecol 17:2563–2565CrossRefGoogle Scholar
  10. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261CrossRefGoogle Scholar
  11. Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035Google Scholar
  12. Beaumont MA, Nielsen R, Robert C, Hey J, Gaggiotti O, Knowles L, Estoup A, Panchal M, Corander J, Hickerson M, Sisson SA, Fagundes N, Chikhi L, Beerli P, Vitalis R, Cornuet JM, Huelsenbeck J, Foll M, Yang ZH, Rousset F, Balding D, Excoffier L (2010) In defence of model-based inference in phylogeography. Mol Ecol 19:436–446CrossRefGoogle Scholar
  13. Berger JO, Fienberg SE, Raftery AE, Robert CP (2010) Incoherent phylogeographic inference. Proc Natl Acad Sci USA 107(41):E157CrossRefGoogle Scholar
  14. Bloomquist EW, Lemey P, Suchard MA (2010) Three roads diverged? Routes to phylogeographic inference. Trends Ecol Evol 25:626–632CrossRefGoogle Scholar
  15. Castelloe J, Templeton RA (1994) Root probabilities for intraspecific gene trees under neutral coaslescent theory. Mol Phylogenet Evol 3:102–113CrossRefGoogle Scholar
  16. Chamberlin TC (1897) The method of multiple working hypotheses. J Geol 5:837CrossRefGoogle Scholar
  17. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  18. Ebach MC, Williams DM (2007) An outline of the foundations of systematics and biogeography. Hist Philos Life Sci 29:83–92Google Scholar
  19. Efron B (1986) Why isn’t everyone a Bayesian? Am Stat 40:1–5Google Scholar
  20. Eswaran V, Harpending H, Rogers AR (2005) Genomics refutes an exclusively African origin of humans. J Hum Evo 49:1–18CrossRefGoogle Scholar
  21. Fagundes NJR, Ray N, Beaumont M, Neuenschwander S, Salzano FM, Bonatto SL, Excoffier L (2007) Statistical evaluation of alternative models of human evolution. Proc Natl Acad Sci 104:17614–17619CrossRefGoogle Scholar
  22. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MassGoogle Scholar
  23. Hey JCA, Machado CA (2003) The study of structured populations—new hope for a difficult and divided science. Nat Rev Genet 4:535–543CrossRefGoogle Scholar
  24. Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol 54:291–301CrossRefGoogle Scholar
  25. Howie D (2002) Interpreting probability: controversies and developments in the early twentieth century. Cambridge University Press, New YorkCrossRefGoogle Scholar
  26. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314CrossRefGoogle Scholar
  27. Knowles LL (2004) The burgeoning field of statistical phylogeography. J Evol Biol 17:1–10CrossRefGoogle Scholar
  28. Knowles LL (2008) Why does a method that fails continue to be used? Evolution 62:2713–2717CrossRefGoogle Scholar
  29. Knowles LL (2009) Statistical phylogeography. Annu Rev Ecol Syst 40:593–612CrossRefGoogle Scholar
  30. Knowles LL, Maddison WP (2002) Statistical phylogeography. Mol Ecol 11:2623–2635CrossRefGoogle Scholar
  31. Laubichler MD (2010) Evolutionary developmental biology offers a significant challenge to the Neo-Darwinian paradigm. In: Ayala F, Arp R (eds) Contemporary debates in philosophy of biology. Wiley-Blackwell, Singapore, pp 199–212Google Scholar
  32. Mayo D, Spanos A (eds) (2010) Error and inference: recent exchanges on experimental reasoning, reliability and the objectivity and rationality of science. Cambridge University Press, CambridgeGoogle Scholar
  33. Mayr E (1982) The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, CambridgeGoogle Scholar
  34. Minelli A (2010) Evolutionary developmental biology does not offer a significant challenge to the Neo-Darwinian paradigm. In: Ayala F, Arp R (eds) Contemporary debates in philosophy of biology. Wiley-Blackwell, Singapore, pp 213–226Google Scholar
  35. Nielsen R, Beaumont MA (2009) Statistical inferences in phylogeography. Mol Ecol 18:1034–1047CrossRefGoogle Scholar
  36. Olson ME, Arroyo-Santos A (2009) Thinking in continua: beyond the “adaptive radiation” metaphor. BioEssays 31:1337–1346CrossRefGoogle Scholar
  37. Panchal M, Beaumont MA (2007) The automation of nested clade phylogeographical analysis. Evolution 61:1466–1480CrossRefGoogle Scholar
  38. Panchal M, Beaumont MA (2010) Evaluating nested clade phylogeographic analysis under models of restricted gene flow. Syst Biol 59:415–432CrossRefGoogle Scholar
  39. Petit RJ (2008a) The coup de grâce for nested clade phylogeographic analysis? Mol Ecol 17:516–518CrossRefGoogle Scholar
  40. Petit RJ (2008b) On the falsifiability of the nested clade phylogeographic analysis method. Mol Ecol 17:1404CrossRefGoogle Scholar
  41. Petit RJ, Grivet D (2002) Optimal randomization strategies when testing the existence of a phylogeographic structure. Genetics 161:469–471Google Scholar
  42. Platt JR (1964) Strong inference. Science 146:347–353CrossRefGoogle Scholar
  43. Popper KR (1959) The logic of scientific discovery. Hutchinson, LondonGoogle Scholar
  44. Posada D, Crandall KA (2001) Intraspecific phylogenetics: trees grafting into networks. Trends Ecol Evol 16:37–45CrossRefGoogle Scholar
  45. Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488CrossRefGoogle Scholar
  46. Riddle BR (2008) What is modern biogeography without phylogeography? J Biogeog 36:1–2CrossRefGoogle Scholar
  47. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C (2013) Approximate Bayesian computation. PLoS Comput Biol 9(1):e1002803CrossRefGoogle Scholar
  48. Tavare S, Balding DJ, Griffiths RC, Donelly P (1997) Inferring coalescence times from DNA sequence data. Genetics 145:505–518Google Scholar
  49. Templeton AR (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117:343–351Google Scholar
  50. Templeton AR, Sing CF, Kessling A, Humphries S (1988) A cladistic-analysis of phenotype associations with haplotypes inferred from restriction endonuclease mapping 2. The analysis of natural-populations. Genetics 120:1145–1154 Google Scholar
  51. Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–390CrossRefGoogle Scholar
  52. Templeton AR (2001) Using phylogeographic analyses of gene trees to test species status and processes. Mol Ecol 10:779–791CrossRefGoogle Scholar
  53. Templeton AR (2002) “Optimal” randomization strategies when testing the existence of a phylogeographic structure: a reply to Petit and Grivet. Genetics 161:473–475Google Scholar
  54. Templeton AR (2004) Statistical phylogeography: methods of evaluating and minimizing inference errors. Mol Ecol 13:789–809Google Scholar
  55. Templeton AR (2006) Population genetics and microevolutionary theory. Wiley-Liss, NJCrossRefGoogle Scholar
  56. Templeton AR (2008) Nested clade analysis: an extensively validated method for strong phylogeographic inference. Mol Ecol 17:516–518CrossRefGoogle Scholar
  57. Templeton AR (2009a) Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Mol Ecol 18:319–331CrossRefGoogle Scholar
  58. Templeton AR (2009b) Why does a method that fails continue to be used: the answer. Evolution 63:807–812CrossRefGoogle Scholar
  59. Templeton AR (2010a) Coalescent-based, maximum likelihood inference in phylogeography. Mol Ecol 19:431–435CrossRefGoogle Scholar
  60. Templeton AR (2010b) Correcting approximate Bayesian computation. Trends Ecol Evol 25(9):488–489, author reply 490–491Google Scholar
  61. Templeton AR (2010c) Coherent and incoherent inference in phylogeography and human evolution. Proc Natl Acad Sci 107(14):6376–6381CrossRefGoogle Scholar
  62. Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669Google Scholar
  63. Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782Google Scholar
  64. Vergara-Silva F (2009) Pattern cladistics and the ‘realism-antirealism debate’ in the philosophy of biology. Acta Biotheor 57:269–294CrossRefGoogle Scholar
  65. Woolley SM, Posada D, Crandall KA (2008) A comparison of phylogenetic network methods using computer simulation. PLoS One 3(4):e1913. doi:10.1371/journal.pone.0001913 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alfonso Arroyo-Santos
    • 1
    • 2
  • Mark E. Olson
    • 3
  • Francisco Vergara-Silva
    • 3
  1. 1.Facultad de Filosofía y LetrasUNAMMexico, DFMexico
  2. 2.Centro de Información GeoprospectivaMexico, DFMexico
  3. 3.Instituto de BiologíaUNAMMexico, DFMexico

Personalised recommendations