Biology & Philosophy

, Volume 29, Issue 6, pp 851–884 | Cite as

Organizational requirements for multicellular autonomy: insights from a comparative case study

  • Argyris Arnellos
  • Alvaro MorenoEmail author
  • Kepa Ruiz-Mirazo


In this paper we explore the organizational conditions underlying the emergence of organisms at the multicellular level. More specifically, we shall propose a general theoretical scheme according to which a multicellular organism is an ensemble of cells that effectively regulates its own development through collective (meta-cellular) mechanisms of control of cell differentiation and cell division processes. This theoretical result derives from the detailed study of the ontogenetic development of three multicellular systems (Nostoc punctiforme, Volvox carteri and Strongylocentrotus purpuratus) and, in particular, of their corresponding cell-to-cell signaling networks. The case study supports our claim that a specific type of functional integration among the cells of a multicellular ensemble (namely, a regulatory control system consisting in several inter-cellular mechanisms that modulate epigenesis and whose operation gets decoupled from the intra-cellular metabolic machinery), is required for it to qualify as a proper organism. Finally, we argue why a multicellular system exhibiting this type of functionally differentiated and integrated developmental organization becomes a self-determining collective entity and, therefore, should be considered as a second-order autonomous system.


Organism Multicellularity Development Regulation Functional integration Mechanisms Epigenetics Autonomy 



This work has been supported by grants from the Ministerio de Ciencia e Innovación FFU2009-12895-CO2-02, Ministerio de Economía y Competitividad FFI2011-25665 and Gobierno Vasco IT 505-10. Argyris Arnellos holds a Marie Curie Research Fellowship (IEF-273635). We wish to thank the participants of the workshop on “Autonomy and Individual Organisms in Biology” (organized by the IAS-Research Centre in October 2012) and especially Laura Nuño de la Rosa and John Dupré for helpful discussions on the subject. Finally, we would like to thank the editor and two anonymous reviewers for useful suggestions that contributed to the improvement of the manuscript.


  1. Angerer RC, Angerer LM (2012) Sea urchin embryo: specification of cell fates. eLS. Wiley, Chichester. doi: 10.1002/9780470015902.a0001513.pub3
  2. Bechtel W (2007) Biological mechanisms: organized to maintain autonomy. In: Boogerd F, Bruggeman F, Hofmeyr JH, Westerhoff HV (eds) Systems biology. Philosophical foundations. Elsevier, Amsterdam, pp 269–302CrossRefGoogle Scholar
  3. Bell G, Mooers AO (1997) Size and complexity among multicellular organisms. Biol J Linn Soc 60:345–363CrossRefGoogle Scholar
  4. Ben-Tabou de-Leon S, Davidson EH (2007) Gene regulation: gene control network in development. Annu Rev Biophys Biomol Struct 36:191–212CrossRefGoogle Scholar
  5. Bondos S (2006) Variations on a theme: Hox and Wnt combinatorial regulation during animal development. Sci STKE 2006(355):pe38Google Scholar
  6. Bonner JT (1999) The origins of multicellularity. Integr Biol 1:27–36CrossRefGoogle Scholar
  7. Bonner JT (2000) First signals: the evolution of multicellular development. Princeton University Press, Princeton, NJGoogle Scholar
  8. Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton, NJGoogle Scholar
  9. Campbell EL, Summers ML, Christman H, Martin ME, Meeks JC (2007) Global gene expression patterns of Nostoc punctiforme in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 189:5247–5256CrossRefGoogle Scholar
  10. Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109CrossRefGoogle Scholar
  11. Christman HD, Campbell EL, Meeks JC (2011) Global transcription profiles of the nitrogen stress response resulting in heterocyst or hormogonium development in Nostoc punctiforme. J Bacteriol 193(24):6874–6886CrossRefGoogle Scholar
  12. Clarke E (2011) The problem of biological individuality. Biol Theory 5(4):312–325CrossRefGoogle Scholar
  13. Costa S, Shaw P (2007) ‘Open minded’ cells: how cells can change fate. Trends Cell Biol 17:101–106CrossRefGoogle Scholar
  14. Davidson EH (2010) Emerging properties of animal gene regulatory networks. Nature 468:911–920CrossRefGoogle Scholar
  15. Dupré J, O’Malley MA (2009) Varieties of living things: life at the intersection of lineage and metabolism. Philos Theory Biol 1:e003Google Scholar
  16. Ereshefsky M, Pedroso M (2013) Biological individuality: the case of biofilms. Biol Philos 28(2):331–349CrossRefGoogle Scholar
  17. Erwin DH, Davidson EH (2009) The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10:141–148CrossRefGoogle Scholar
  18. Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633Google Scholar
  19. Folse HJ III, Roughgarden J (2010) What is an individual organism? A multilevel selection perspective. Q Rev Biol 85(4):447–472CrossRefGoogle Scholar
  20. Gardner A (2009) Adaptation as organism design. Biol Lett 5(6):861–864CrossRefGoogle Scholar
  21. Gardner A, Grafen A (2009) Capturing the superorganism: a formal theory of group adaptation. J Evol Biol 22(4):659–671CrossRefGoogle Scholar
  22. Gerhart J, Kirschner M (1997) Cells, embryos, and evolution. Blackwell Science, Malden, MAGoogle Scholar
  23. Godfrey-Smith P (2009) Darwinian populations and natural selection. OUP, OxfordGoogle Scholar
  24. Hallmann A (2011) Evolution of reproductive development in the volvocine algae. Sex Plant Reprod 24:97–112. doi: 10.1007/s00497-010-0158-4 CrossRefGoogle Scholar
  25. Hooker C (2009) Interaction and bio-cognitive order. Synthese 166:513–546CrossRefGoogle Scholar
  26. Kaiser D (2001) Building a multicellular organism. Annu Rev Genet 35:103–123CrossRefGoogle Scholar
  27. Kirk DL (1998) Volvox: molecular-genetic origins of multicellularity and cellular differentiation. Developmental and cell biology series. Cambridge University Press, CambridgeGoogle Scholar
  28. Kirk DL (2005) A twelve-step program for evolving multicellularity and a division of labor. BioEssays 27:299–310CrossRefGoogle Scholar
  29. Kirk MM, Ransick A, McRae SE, Kirk DL (1993) The relationship between cell size and cell fate in Volvox carteri. J Cell Biol 123:191–208CrossRefGoogle Scholar
  30. Kumar K, Mella Herrera AR, Golden WJ (2010) Cyanobacterial Heterocysts. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a000315 Google Scholar
  31. Maldener I, Muro Pastor AM (2010) Cyanobacterial heterocysts. Encyclopedia of Life Sciences (ELS). Wiley, Chichester. doi: 10.1002/9780470015902.a0000306.pub2
  32. Materna SC, Davidson EH (2012) Comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364:77–87CrossRefGoogle Scholar
  33. Mattick J (2004) The hidden genetic program of complex organisms. Sci Am 291(4):60–67CrossRefGoogle Scholar
  34. Maturana HR, Varela FJ (1973) De Máquinas y Seres Vivos—Una teoría sobre la organización biológica. Editorial Universitaria S.A, Santiago de ChileGoogle Scholar
  35. Maturana HR, Varela FJ (1987) The tree of knowledge: the biological roots of human understanding. Shambhala Publications, BostonGoogle Scholar
  36. Maynard Smith J (1986) The problems of biology. Oxford University Press, OxfordGoogle Scholar
  37. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Freeman, New YorkGoogle Scholar
  38. McFall-Ngai MJ (1999) Consequences of evolving with bacterial symbionts: insights from the squid-vibrio associations. Annu Rev Ecol Syst 30:235–256CrossRefGoogle Scholar
  39. Meeks JC, Campbell EL, Summers ML, Wong FC (2002) Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 178:395–403CrossRefGoogle Scholar
  40. Michod RE (1999) Darwinian dynamics: evolutionary transitions in fitness and individuality. Princeton University Press, Princeton, NJGoogle Scholar
  41. Michod RE (2005) On the transfer of fitness from the cell to the multicellular organism. Biol Philos 20:967–987CrossRefGoogle Scholar
  42. Moreno A, Ruiz-Mirazo K (2009) The problem of the emergence of functional diversity in prebiotic evolution. Biol Philos 24(5):585–605CrossRefGoogle Scholar
  43. Moreno A, Ruiz-Mirazo K, Barandiaran, XE (2011) The impact of the paradigm of complexity on the foundational frameworks of biology and cognitive science. In: Hooker CA (ed) Philosophy of Complex Systems. Vol. X of the Gavia D, Thagard P, Woods J (eds) Handbook of the Philosophy of Science. Elsevier, Amsterdam, pp 311–334Google Scholar
  44. Mossio M, Moreno A (2010) Organisational closure in biological organisms. Hist Philos Life Sci 32(2–3):269–288Google Scholar
  45. Nedelcu AM, Michod RE (2004) Evolvability, modularity, and individuality during the transition to multicellularity in volvocalean green algae. In: Schlosser G, Wagner G (eds) Modularity in development and evolution. University of Chicago Press, Chicago, pp 468–489Google Scholar
  46. Oliveri P, Tu Q, Davidson EH (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci USA 105:5955–5962CrossRefGoogle Scholar
  47. Pattee HH (1973) The physical basis and origin of hierarchical control. In: Pattee HH (ed) Hierarchy theory. Braziller, New York, pp 73–108Google Scholar
  48. Pepper JW, Herron MD (2008) Does biology need an organism concept? Biol Rev 83(4):621–627CrossRefGoogle Scholar
  49. Perlman RL (2000) The concept of the organism in physiology. Theory Biosci 119:174–186CrossRefGoogle Scholar
  50. Peter I, Davidson EH (2009) Genomic control of patterning. Int J Dev Biol 53:707–716CrossRefGoogle Scholar
  51. Peter I, Davidson EH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340(2):188–199CrossRefGoogle Scholar
  52. Peter I, Davidson EH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature 474:635–639CrossRefGoogle Scholar
  53. Queller DC, Strassmann JE (2009) Beyond society: the evolution of organismality. Philos Trans R Soc B Biol Sci 364:3143–3155CrossRefGoogle Scholar
  54. Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251CrossRefGoogle Scholar
  55. Rosslenbroich B (2009) The theory of increasing autonomy in evolution—a new proposal for understanding macroevolutionary innovations. Biol Philos 24:623–644CrossRefGoogle Scholar
  56. Ruiz-Mirazo K, Moreno A (2004) Basic autonomy as a fundamental step in the synthesis of life. Artif Life 10(3):235–259CrossRefGoogle Scholar
  57. Ruiz-Mirazo K, Moreno A (2011) Autonomy in evolution: from minimal to complex life. Synthese 185(1):21–52CrossRefGoogle Scholar
  58. Ruiz-Mirazo K, Etxeberria A, Moreno A, Ibáñez J (2000) Organisms and their place in biology. Theory Biosci 119:43–67CrossRefGoogle Scholar
  59. Ruiz-Mirazo K, Peretó J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosph 34(3):323–346CrossRefGoogle Scholar
  60. Ruiz-Mirazo K, Umerez J, Moreno A (2008) Enabling conditions for open-ended evolution. Biol Philos 23(1):67–85CrossRefGoogle Scholar
  61. Santelices B (1999) How many kinds of individual are there? Trends Ecol Evol 14(4):152–155CrossRefGoogle Scholar
  62. Smith J, Theodoris C, Davidson EH (2007) A gene regulatory network subcircuit drives a dynamic pattern of gene expression. Science 318:794–797CrossRefGoogle Scholar
  63. Stelreny K, Griffiths PE (1999) Sex and death. An introduction to philosophy of biology. The University of Chicago Press, ChicagoGoogle Scholar
  64. Strassmann JE, Queller DC (2010) The social organism: congresses, parties and committees. Evolution 64(3):605–616CrossRefGoogle Scholar
  65. Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M (2008) Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek 94(1):35–50CrossRefGoogle Scholar
  66. West SA, Kiers ET (2009) Evolution: what is an organism? Curr Biol 19(23):R1080–R1082CrossRefGoogle Scholar
  67. Wilson J (1999) Biological individuality. The individuation and persistence of living entities. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  68. Wilson J (2000) Ontological butchery: organism concepts and biological generalizations. Philos Sci 67:301–311CrossRefGoogle Scholar
  69. Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136:337–356CrossRefGoogle Scholar
  70. Wimsatt W (1974) Complexity and organization. In: Schaffner KF, Cohen RS (eds) PSA 1972. Reidel Publishing Company, Dordrecht, pp 67–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Argyris Arnellos
    • 1
  • Alvaro Moreno
    • 1
    Email author
  • Kepa Ruiz-Mirazo
    • 1
    • 2
  1. 1.IAS-Research Centre for Life, Mind and Society, Department of Logic and Philosophy of ScienceUniversity of the Basque CountryDonostia - San SebastiánSpain
  2. 2.Biophysics Unit (CSIC-UPV/EHU)University of the Basque CountryDonostia - San SebastiánSpain

Personalised recommendations