Biology & Philosophy

, Volume 29, Issue 1, pp 71–88 | Cite as

Two neurocomputational building blocks of social norm compliance

Article

Abstract

Current explanatory frameworks for social norms pay little attention to why and how brains might carry out computational functions that generate norm compliance behavior. This paper expands on existing literature by laying out the beginnings of a neurocomputational framework for social norms and social cognition, which can be the basis for advancing our understanding of the nature and mechanisms of social norms. Two neurocomputational building blocks are identified that might constitute the core of the mechanism of norm compliance. They consist of Bayesian and reinforcement learning systems. It is sketched why and how the concerted activity of these systems can generate norm compliance by minimization of three specific kinds of prediction-errors.

Keywords

Social norms Bayesian brain Reinforcement learning Uncertainty minimization 

References

  1. Baker CL, Saxe RR, Tenenbaum JB (2011) Bayesian theory of mind: modeling joint belief–desire attribution. In: Proceedings of the thirty-third annual conference of the Cognitive Science Society, pp 2469–2474Google Scholar
  2. Behrens TE, Hunt LT, Rushworth MF (2009) The computation of social behavior. Science 324:1160–1164CrossRefGoogle Scholar
  3. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431CrossRefGoogle Scholar
  4. Bicchieri C (2006) The grammar of society: the nature and dynamics of social norms. Cambridge University Press, New YorkGoogle Scholar
  5. Binmore K (1994) Game theory and the social contract, vol I. Playing fair, vol I. MIT Press, Cambridge, MAGoogle Scholar
  6. Botvnick MM, Niv Y, Barto A (2009) Hierarchically organized behavior and its neural foundations: a reinforcement-learning perspective. Cognition 113:262–280CrossRefGoogle Scholar
  7. Bowers JS, Davis CJ (2012) Bayesian just-so stories in psychology and neuroscience. Psychol Bull 138:389–414CrossRefGoogle Scholar
  8. Boyd R, Richerson P (2001) Norms and bounded rationality. In: Gigerenzer G, Selten R (eds) Bounded rationality: the adaptive toolbox. MIT Press, Cambridge, MA, pp 281–296Google Scholar
  9. Camerer C, Ho TH, Chong K (2004) A cognitive hierarchy model of one-shot games. Q J Econ 119:861–898CrossRefGoogle Scholar
  10. Clark A (1997) Being there. MIT Press, Cambridge, MAGoogle Scholar
  11. Clark A (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 36:181–253CrossRefGoogle Scholar
  12. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711CrossRefGoogle Scholar
  13. Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011) Model-based influences on humans’ choices and striatal prediction errors. Neuron 69:1204–1215CrossRefGoogle Scholar
  14. Dayan P (2008) The role of value systems in decision making. In: Engel C, Singer W (eds) Better than conscious? Decision making, the human mind, and implications for institutions. MIT Press, Frankfurt, pp 51–70Google Scholar
  15. Dickinson A, Balleine BW (2002) The role of learning in the operation of motivational systems. In: Gallistel CR (ed) Learning, motivation and emotion, vol 3. Wiley, New York, pp 497–533Google Scholar
  16. Doll BB, Jacobs WJ, Sanfey AG, Frank MJ (2009) Instructional control of reinforcement learning: a behavioral and neurocomputational investigation. Brain Res 1299:74–94CrossRefGoogle Scholar
  17. Douglas M (1986) How institutions think. Syracuse University Press, New YorkGoogle Scholar
  18. Elster J (1989) Social norms and economic theory. J Econ Perspect 3:99–117CrossRefGoogle Scholar
  19. Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol 4:e1000211CrossRefGoogle Scholar
  20. Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138CrossRefGoogle Scholar
  21. Gershman SJ, Daw ND (2012) Perception, action and utility: the tangled skein. In: Rabinovich M, Friston K, Varona P (eds) Principles of brain dynamics: global state interactions. MIT Press, Cambridge, MA, pp 293–312Google Scholar
  22. Gershman SJ, Niv Y (2010) Learning latent structure: carving nature at its joints. Curr Opin Neurobiol 20(2):251–256CrossRefGoogle Scholar
  23. Gintis H (2010) Social norms as choreography. Polit Philos Econ 9:251–264CrossRefGoogle Scholar
  24. Gläscher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66:585–595CrossRefGoogle Scholar
  25. Glimcher PW (2011) Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci USA 108:15647–15654CrossRefGoogle Scholar
  26. Hamlin JK, Ullman TD, Tenenbaum JB, Goodman ND, Baker CL (2013) The mentalistic basis of core social cognition: experiments in preverbal infants and a computational model. Dev Sci 16(2):209–226CrossRefGoogle Scholar
  27. Kwisthout J, van Rooij I (2013) Bridging the gap between theory and practice of approximate Bayesian inference. Cognit Syst Res 24:2–8CrossRefGoogle Scholar
  28. Lee D (2008) Game theory and neural basis of social decision making. Nat Neurosci 11:404–409CrossRefGoogle Scholar
  29. Lee MD (2011) How cognitive modeling can benefit from hierarchical Bayesian models. J Math Psychol 55:1–7CrossRefGoogle Scholar
  30. Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A: 20:1434–1448CrossRefGoogle Scholar
  31. Lewis DK (1969) Convention: a philosophical study. Harvard University Press, Cambridge, MAGoogle Scholar
  32. Li J, Delgado MR, Phelps EA (2011) How instructed knowledge modulates the neural systems of reward learning. Proc Natl Acad Sci USA 108:55–60CrossRefGoogle Scholar
  33. Machens C, Gollisch T, Kolesnikova O, Herz A (2005) Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron 47(3):447–456CrossRefGoogle Scholar
  34. Millikan RG (2005) Language: a biological model. Oxford University Press, New YorkCrossRefGoogle Scholar
  35. Montague PR, Lohrenz T (2007) To detect and correct: norm violations and their enforcement. Neuron 56:14–18CrossRefGoogle Scholar
  36. Niv Y (2009) Reinforcement learning in the brain. J Math Psychol 53:139–154CrossRefGoogle Scholar
  37. Niv Y, Schoenbaum G (2008) Dialogues on prediction errors. Trends Cognit Sci 12:265–272CrossRefGoogle Scholar
  38. Pettit P (1990) Virtus Normativa: rational choice perspectives. Ethics 100:725–755CrossRefGoogle Scholar
  39. Rao RPN, Olshausen B, Lewicki M (eds) (2002) Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge, MAGoogle Scholar
  40. Rosati AG, Hare B (2010) Social cognition: from behavior-reading to mind-reading. In: Koob G, Thompson RF, Le Moal M (eds) The encyclopedia of behavioral neuroscience. Elsevier, Amsterdam, pp 263–268CrossRefGoogle Scholar
  41. Ross D (2005) Economic theory and cognitive science: microexplanation. MIT Press, Cambridge, MAGoogle Scholar
  42. Sanborn AN, Griffiths TL, Navarro DJ (2010) Rational approximations to rational models: alternative algorithms for category learning. Psychol Rev 117(4):1144–1167CrossRefGoogle Scholar
  43. Schotter A (1981) The economic theory of social institutions. Cambridge University Press, Cambridge, MACrossRefGoogle Scholar
  44. Schultz W (2007) Reward. Scholarpedia 2(3):1652. http://www.scholarpedia.org/article/Reward
  45. Serences J (2008) Value-based modulations in human visual cortex. Neuron 60(6):1169–1181CrossRefGoogle Scholar
  46. Seymour B, Yoshida W, Dolan R (2009) Altruistic learning. Frontiers Behav Neurosci 3:23. doi:10.3389/neuro.08.023.2009 CrossRefGoogle Scholar
  47. Smith V (2007) Rationality in economics: constructivist and ecological forms. Cambridge University Press, New YorkGoogle Scholar
  48. Sripada CS, Stich S (2007) A framework for the psychology of moral norms. In: Carruthers P, Laurence S, Stich S (eds) Innateness and the structure of the mind, vol II. Oxford University Press, London, pp 280–302Google Scholar
  49. Sterelny K (2003) Thought in a hostile world: the evolution of human cognition. Blackwell, OxfordGoogle Scholar
  50. Sugden R (1986) The economics of rights, cooperation and welfare. Blackwell, OxfordGoogle Scholar
  51. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge, MAGoogle Scholar
  52. Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure and abstraction. Science 331:1279–1285CrossRefGoogle Scholar
  53. Tricomi E, Balleine B, O’Doherty J (2009) A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci 29:2225–2232CrossRefGoogle Scholar
  54. Ullmann-Margalit E (1977) The emergence of norms. Oxford University Press, OxfordGoogle Scholar
  55. Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358:593–602CrossRefGoogle Scholar
  56. Yoshida W, Seymour B, Friston KJ, Dolan RJ (2010) Neural mechanisms of belief inference during cooperative games. J Neurosci 30:10744–10751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Tilburg Center for Logic and Philosophy of ScienceTilburg UniversityTilburgThe Netherlands

Personalised recommendations