Biology & Philosophy

, Volume 28, Issue 2, pp 189–204 | Cite as

Pluralism or unity in biology: could microbes hold the secret to life?



Pluralism is popular among philosophers of biology. This essay argues that negative judgments about universal biology, while understandable, are very premature. Familiar life on Earth represents a single example of life and, most importantly, there are empirical as well as theoretical reasons for suspecting that it may be unrepresentative. Scientifically compelling generalizations about the unity of life (or lack thereof) must await the discovery of forms of life descended from an alternative origin, the most promising candidate being the discovery of extraterrestrial life. Nonetheless, in the absence of additional examples of life, we are best off exploring the microbial world for promising explanatory concepts, principles, and mechanisms rather than prematurely giving up on universal biology. Unicellular microbes (especially prokaryotes) are by far the oldest, metabolically most diverse, and environmentally tolerant form of life on our planet. Yet somewhat ironically, much of our theorizing about life still implicitly privileges complex multicellular eukaryotes, which are now understood to be highly specialized, fragile latecomers to Earth. The problem with pursuing a pluralist approach to understanding life is that it is likely to blind us to the significance of just those entities and causal processes most likely to shed light on the underlying nature of life.


Archaea Bacteria Eukarya Explanation Prokaryote Eukaryote Pluralism Reduction Universal theory of life 


  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular Biology of the Cell (Fourth Addition). Garland Science, New YorkGoogle Scholar
  2. Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of Early Archean stromatolites. Proc Natl Acad Sci USA 106:9548–9555CrossRefGoogle Scholar
  3. Anbar AD, Ariel D, Zahnle KJ, Arnold GL, Mojzsis SJ (2001) Extraterrestrial iridium, sediment accumulation and the habitability of the early Earth’s surface. J Geophys Res 106:3219–3236CrossRefGoogle Scholar
  4. Baross JA, Benner SA, Cody GD, Copley SD, Pace NR, Scott JA, Shapiro R, Sogin ML, Stein JL, Summons R, Szostak JW (2007) The limits to organic life in planetary systems. National Academy Press, Washington DCGoogle Scholar
  5. Benner SA (1994) Expanding the genetic lexicon: incorporating nonstandard amino acids into proteins by ribosome-based synthesis. Trends Biotechnol 12:158–163CrossRefGoogle Scholar
  6. Benner SA (2004) Understanding nucleic acids using synthetic chemistry. Acc Chem Res 37:784–797CrossRefGoogle Scholar
  7. Benner SA, Hutter D (2002) Phosphates, DNA, and the search for nonterran life: a second generation model for genetic molecules. Bioorg Chem 30:62–80CrossRefGoogle Scholar
  8. Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689CrossRefGoogle Scholar
  9. Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc R Soc B 277:819–827CrossRefGoogle Scholar
  10. Chicote E, Garcia AM, Moreno DA, Sarró MI, Lorenzo PI, Montero F (2005) Isolation and identification of bacteria from spent nuclear fuel pools. J Ind Microbiol Biotechnol 32:155–162CrossRefGoogle Scholar
  11. Cleland CE (2007) Epistemological issues in the study of microbial life: alternative terran biospheres? Stud Hist Philos Biol Biomed Sci 38:847–861Google Scholar
  12. Cleland CE (2012) Life without definitions. Synthese 185:125–144CrossRefGoogle Scholar
  13. Cleland CE, Copley SD (2005) The possibility of alternative microbial life on Earth. Int J Astrobiol 4:165–173CrossRefGoogle Scholar
  14. Dagan T, Artzy-Randrup Y, Martin W (2008) Molecular networks and cumulative impact of lateral gene transfer in prokaryotic genome evolution. Proc Natl Acad Sci USA 105:10039–10044CrossRefGoogle Scholar
  15. Dawkins R (1983) Universal Darwinism. In: Bendall DS (ed) Evolution from molecules to man. Cambridge University Press, Cambridge, pp 403–425Google Scholar
  16. Delong EF, Pace NR (2001) Environmental diversity of Bacteria and Archaea. Syst Biol 50:470–478CrossRefGoogle Scholar
  17. Dobzhansky T (1973) Nothing in biology makes sense except in light of evolution. Am Biol Teacher 35:125–129CrossRefGoogle Scholar
  18. Doolittle WF, Papke RT (2006) Genomics and the bacterial species problem. Genome Biol 7:116.1–116.7Google Scholar
  19. Dupré J (1993) The Disorder of Things. Harvard University Press, HarvardGoogle Scholar
  20. Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510CrossRefGoogle Scholar
  21. Ereshefsky M (1998) Species pluralism and anti-realism. Philos Sci 65:103–120CrossRefGoogle Scholar
  22. Ereshefsky M (2010) Microbiology and the species problem. Biol Philos 25:553–568CrossRefGoogle Scholar
  23. Folse HJ III, Roughgarden J (2010) What is an individual organism? A multilevel selection perspective. Q Rev Biol 85:447–472CrossRefGoogle Scholar
  24. Franklin LR (2007) Bacteria, sex, and systematics. Philos Sci 74:69–95CrossRefGoogle Scholar
  25. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746CrossRefGoogle Scholar
  26. Hempel CG, Oppenheim P (1948) Studies in the logic of explanation. Philos Sci 15:135–175CrossRefGoogle Scholar
  27. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774Google Scholar
  28. Keller EF (2002) Making Sense of Life: Explaining Biological Development with Models. Harvard University Press, Cambridge, MA, Metaphors and MachinesGoogle Scholar
  29. Knoll AH (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet 39:217–239CrossRefGoogle Scholar
  30. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B 361:1023–1038CrossRefGoogle Scholar
  31. Koonin EV (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res 37:1011–1034CrossRefGoogle Scholar
  32. Koonin EV (2010) Origin and early evolution of eukaryotes in the light of metagenomics. Genome Biol 11:1–12CrossRefGoogle Scholar
  33. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742CrossRefGoogle Scholar
  34. Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014CrossRefGoogle Scholar
  35. Machamer P, Darden L, Craver CF (2000) Thinking about mechanisms. Philos Sci 67:1–25CrossRefGoogle Scholar
  36. Madigan MT, Martinko JM (2006) Brock Biology of Microorganisms. Pearson Prentice Hall, San FranciscoGoogle Scholar
  37. Magner LN (2002) A history of the life sciences. Mercel Dekker, Inc., New YorkCrossRefGoogle Scholar
  38. McDonald D, Vasques-Baeza Y, Walters WA, Caporaso JG, Knight R (this issue) From molecules to dynamic biological communities. Biol Philos. doi: 10.1007/s10539-013-9364-4
  39. Meierhenrich U (2008) Amino Acids and the Asymmetry of Life. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  40. Mishler BD, Brandon RN (1987) Individuality, pluralism, and the phylogenetic species concept. Biol Philos 2:397–414CrossRefGoogle Scholar
  41. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 383:55–59CrossRefGoogle Scholar
  42. Nagel E (1949) The Meaning of reduction in the natural sciences. In: Stauffer RC (ed) Science and civilization. University of Wisconsin Press, Madison, pp 99–138Google Scholar
  43. Nealson KH, Conrad PG (1999) Life: past, present and future. Philos Trans R Soc B 354:1923–1939CrossRefGoogle Scholar
  44. Needham P (2002) The discovery that water is H2O. Int Stud Philos of Sci 16:205–226CrossRefGoogle Scholar
  45. Nielsen PE, Egholm M (1999) An introduction to peptide nucleic acid. Current Issue Mol Biol 1:89–1104Google Scholar
  46. O’Malley M, Dupré J (2007) Metagenomics and biological ontology. Stud Hist Philos Biol Biomed Sci 38:834–846Google Scholar
  47. Oren A (2004) Prokaryote diversity and taxonomy: current status and future challenges. Philos Trans R Soc Lond B 359:623–638CrossRefGoogle Scholar
  48. Oren A (2009) Systematics of archaea and bacteria. In: Minelli A, Contrfatto G (eds) Biological science fundamentals and systematics (vol. II). EOLSS Pubs, OxfordGoogle Scholar
  49. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew S, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344CrossRefGoogle Scholar
  50. Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorities: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol 2:1–19CrossRefGoogle Scholar
  51. Powner MW, Sutherland JD (2011) Prebiotic chemistry: a new modus operandi. Philos Trans R Soc B 366:2870–2877CrossRefGoogle Scholar
  52. Rohwer F, Barott K (this issue) Viral information. Biol Philos. doi: 10.1007/s10539-012-9344-0
  53. Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251CrossRefGoogle Scholar
  54. Ryder G (2002) Mass flux in the ancient Earth–Moon system and benign implications for the origin of life on Earth. J Geophys Res E 107:1–6CrossRefGoogle Scholar
  55. Sapp J (2003) Genesis: the evolution of biology. Oxford University Press, OxfordGoogle Scholar
  56. Schmitt-Kopplin P, Gabelico Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107:2763–2768CrossRefGoogle Scholar
  57. Schultze-Makuch D, Irwin LN (2006) The prospect of alien life in exotic forms in other worlds. Naturwissenschaften 93:155–172CrossRefGoogle Scholar
  58. Schultze-Makuch D, Irwin LN (2008) Life in the Universe: Expectations and Constraints. Springer-Verlag, BerlinCrossRefGoogle Scholar
  59. Shapiro R (2000) A replicator was not involved in the origin of life. IUBMB Life 49:173–176Google Scholar
  60. Shen B, Dong L, Xiao S, Kowalewksi M (2008) The avalon explosion: evolution of Ediacara morphospace. Science 319:81–84CrossRefGoogle Scholar
  61. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161CrossRefGoogle Scholar
  62. Smith E, Morowitz H (2004) Universality in intermediary metabolism. Proc Natl Acad Sci USA 101:13168–13173CrossRefGoogle Scholar
  63. Snoeyink VL, Jenkins D (1980) Water chemistry. Wiley, New YorkGoogle Scholar
  64. Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nature Rev Microb 5:801–812CrossRefGoogle Scholar
  65. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810CrossRefGoogle Scholar
  66. Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Eestern Australia. Nature Geosci 4:698–702CrossRefGoogle Scholar
  67. Ward PD, Brownlee D (2000) Rare Earth: Why complex life is uncommon in the universe. Springer-Verlag, New YorkGoogle Scholar
  68. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposals for the domains of Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579CrossRefGoogle Scholar
  69. Yang Z, Chen F, Alvarado JB, Benner SA (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J Am Chem Soc 133:15105–15112CrossRefGoogle Scholar
  70. Zarraonaindia I, Smith DP, Gilbert JA (this issue) Beyond the genome: community-level analysis of the microbial world. Biol Philos. doi: 10.1007/s10539-012-9357-8

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Philosophy, Center for AstrobiologyUniversity of Colorado BoulderBoulderUSA

Personalised recommendations