Skip to main content
Log in

Natural taxonomy in light of horizontal gene transfer

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

We discuss the impact of horizontal gene transfer (HGT) on phylogenetic reconstruction and taxonomy. We review the power of HGT as a creative force in assembling new metabolic pathways, and we discuss the impact that HGT has on phylogenetic reconstruction. On one hand, shared derived characters are created through transferred genes that persist in the recipient lineage, either because they were adaptive in the recipient lineage or because they resulted in a functional replacement. On the other hand, taxonomic patterns in microbial phylogenies might also be created through biased gene transfer. The agreement between different molecular phylogenies has encouraged interpretation of the consensus signal as reflecting organismal history or as the tree of cell divisions; however, to date the extent to which the consensus reflects shared organismal ancestry and to which it reflects highways of gene sharing and biased gene transfer remains an open question. Preferential patterns of gene exchange act as a homogenizing force in creating and maintaining microbial groups, generating taxonomic patterns that are indistinguishable to those created by shared ancestry. To understand the evolution of higher bacterial taxonomic units, concepts usually applied in population genetics need to be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635

    Article  Google Scholar 

  • Adams KL, Song K, Roessler PG, Nugent JM, Doyle JL, Doyle JJ, Palmer JD (1999) Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci U S A 96:13863–13868

    Article  Google Scholar 

  • Asai T, Zaporojets D, Squires C, Squires CL (1999) An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria [see comments]. Proc Natl Acad Sci U S A 96:1971–1976

    Article  Google Scholar 

  • Bapteste E, Boucher Y (2009) Epistemological impacts of horizontal gene transfer on classification in microbiology. In: Gogarten M, Gogarten J, Olendzenski L (eds) Horizontal gene transfer: genomes in flux, vol 532. Humana Press, New York

    Chapter  Google Scholar 

  • Bapteste E, O’Malley MA, Beiko RG, Ereshefsky M, Gogarten JP, Franklin-Hall L, Lapointe FJ, Dupré J, Dagan T, Boucher Y, Martin W (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34

    Article  Google Scholar 

  • Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102:14332–14337

    Article  Google Scholar 

  • Blankenship RE, Raymond J, Lince M, Larkum AWD, Jermiin LS, Lockhart PJ, Zhaxybayeva O, Gogarten JP (2001) Evolution of photosynthetic antennas and reaction centers. In: Proceedings of the 12th international congress on photosynthesis Melbourne, Australia, CSIRO Publishing, PL13

  • Boussau B, Gueguen L, Gouy M (2008) Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of Aquificales in the phylogeny of bacteria. BMC Evol Biol 8:272

    Article  Google Scholar 

  • Brochier C, Philippe H, Moreira D (2000) The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet 16:529–533

    Article  Google Scholar 

  • Chan CX, Darling AE, Beiko RG, Ragan MA (2009) Are protein domains modules of lateral genetic transfer? PLoS One 4:e4524

    Article  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  Google Scholar 

  • Dagan T, Martin W (2007) Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci U S A 104:870–875

    Article  Google Scholar 

  • Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci U S A 105:10039–10044

    Article  Google Scholar 

  • Daubin V, Gouy M, Perriere G (2002) A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res 12:1080–1090

    Article  Google Scholar 

  • Doolittle WF (2004) W. Ford Doolittle. Curr Biol 14:R176–R177

    Article  Google Scholar 

  • Doolittle WF (2009) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Philos Trans R Soc Lond B Biol Sci 364:2221–2228

    Article  Google Scholar 

  • Farahi K, Pusch GD, Overbeek R, Whitman WB (2004) Detection of lateral gene transfer events in the prokaryotic tRNA synthetases by the ratios of evolutionary distances method. J Mol Evol 58:615–631

    Article  Google Scholar 

  • Fournier GP, Gogarten JP (2008) Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol 190:1124–1127

    Article  Google Scholar 

  • Franklin-Hall L (2010) Trashing the tree: bad reasons and good reasons. Biol Philos (this issue) [details to follow]

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  Google Scholar 

  • Geach P (1967) Identity. Rev Metaphys 21:3–12

    Google Scholar 

  • Gogarten JP (1995) The early evolution of cellular life. Trends Ecol Evol 10:147–151

    Article  Google Scholar 

  • Gogarten JP, Hilario E (2006) Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 6:94

    Article  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    Google Scholar 

  • Gray GS, Fitch WM (1983) Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene from Staphylococcus aureus. Mol Biol Evol 1:57–66

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31:111–119

    Article  Google Scholar 

  • House CH (2009) The tree of life viewed through the contents of genomes. Methods Mol Biol 532:141–161

    Article  Google Scholar 

  • Huang J, Gogarten JP (2006) Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends Genet 22:361–366

    Article  Google Scholar 

  • Huang J, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8:R99

    Article  Google Scholar 

  • Huang J, Gogarten JP (2008) Concerted gene recruitment in early plant evolution. Genome Biol 9:R109

    Article  Google Scholar 

  • Huang J, Gogarten JP (2009) Ancient gene transfer as a tool in phylogenetic reconstruction. Methods Mol Biol 532:127–139

    Article  Google Scholar 

  • Huang J, Xu Y, Gogarten JP (2005) The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. Mol Biol Evol 22:2142–2146

    Article  Google Scholar 

  • Hyde D (2008) Sorites Paradox http://plato.stanford.edu/archives/fall2008/entries/sorites-paradox/. In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Fall 2008 Edition)

  • Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52:333

    Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 96:3801–3806

    Article  Google Scholar 

  • Koonin EV, Wolf YI (2009) The fundamental units, processes and patterns of evolution, and the tree of life conundrum. Biol Direct 4:33

    Article  Google Scholar 

  • Lawrence JG, Hendrickson H (2005) Genome evolution in bacteria: order beneath chaos. Curr Opin Microbiol 8:572–578

    Article  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  Google Scholar 

  • Margulis L (2009) Genome acquisition in horizontal gene transfer: symbiogenesis and macromolecular sequence analysis. Methods Mol Biol 532:181–191

    Article  Google Scholar 

  • Margulis L, Sagan D (2002) Acquiring genomes: a theory of the origin of species. Basic Books, New York

    Google Scholar 

  • Martin W, Brinkmann H, Savonna C, Cerff R (1993) Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A 90:8692–8696

    Article  Google Scholar 

  • McCann A, Cotton JA, McInerney JO (2008) The tree of genomes: an empirical comparison of genome-phylogeny reconstruction methods. BMC Evol Biol 8:312

    Article  Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci U S A 102:850–855

    Article  Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci U S A 102:18147–18152

    Article  Google Scholar 

  • Morandi A, Zhaxybayeva O, Gogarten JP, Graf J (2005) Evolutionary and diagnostic implications of intragenomic heterogeneity in the 16S rRNA gene in Aeromonas strains. J Bacteriol 187:6561–6564

    Article  Google Scholar 

  • O’Malley MA, Dupré J (2007) Size doesn’t matter: towards a more inclusive philosophy of biology. Biol Philos 22:155–191

    Article  Google Scholar 

  • Olendzenski L, Gogarten JP (2009) Gene transfer: who benefits? Methods Mol Biol 532:3–9

    Article  Google Scholar 

  • Olendzenski L, Liu L, Zhaxybayeva O, Murphey R, Shin DG, Gogarten JP (2000) Horizontal transfer of archaeal genes into the Deinococcaceae: detection by molecular and computer-based approaches. J Mol Evol 51:587–599

    Google Scholar 

  • Olendzenski L, Zhaxybayeva O, Gogarten J (2001) What’s in a tree? Does horizontal gene transfer determine microbial taxonomy? In: Seckbach J (ed) Cellular origin and life in extreme habitats, vol 4. Kluwer, Dordrecht, pp 67–78

    Google Scholar 

  • Olendzenski L, Zhaxybayeva O, Gogarten JP (2002) Horizontal gene transfer: a new taxonomic principle? In: Syvanen M, Kado CI (eds) Horizontal gene transfer. Academic Press, New York, pp 427–435

    Chapter  Google Scholar 

  • Papke RT (2009) A critique of prokaryotic species concepts. Methods Mol Biol 532:379–395

    Article  Google Scholar 

  • Plutarch (75) Theseus, translated by John Dryden. The Internet Classics Archive. Retrieved 7 Oct 2009

  • Puigbò P, Wolf YI, Koonin EV (2009) Search for a ‘tree of life’ in the thicket of the phylogenetic forest. J Biol 8:59

    Article  Google Scholar 

  • Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538

    Google Scholar 

  • Schouls LM, Schot CS, Jacobs JA (2003) Horizontal transfer of segments of the 16S rRNA genes between species of the Streptococcus anginosus group. J Bacteriol 185:7241–7246

    Article  Google Scholar 

  • Sheppard SK, McCarthy ND, Falush D, Maiden MC (2008) Convergence of Campylobacter species: implications for bacterial evolution. Science 320:237–239

    Article  Google Scholar 

  • Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452

    Article  Google Scholar 

  • Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49:169–181

    Article  Google Scholar 

  • Swithers KS, Gogarten JP, Fournier GP (2009) Trees in the web of life. J Biol 8:54

    Article  Google Scholar 

  • Wang Y, Zhang Z (2000) Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology 146:2845–2854

    Google Scholar 

  • Wang Y, Zhang Z, Ramanan N (1997) The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol 179:3270–3276

    Google Scholar 

  • Wolf YI, Rogozin IB, Grishin NV, Koonin EV (2002) Genome trees and the tree of life. Trends Genet 18:472–479

    Article  Google Scholar 

  • Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209

    Google Scholar 

  • Zhaxybayeva O, Gogarten JP (2004) Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet 20:182–187

    Article  Google Scholar 

  • Zhaxybayeva O, Lapierre P, Gogarten JP (2004) Genome mosaicism and organismal lineages. Trends Genet 20:254–260

    Article  Google Scholar 

  • Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108

    Article  Google Scholar 

  • Zhaxybayeva O, Nesbo C, Doolittle WF (2007) Systematic overestimation of gene gain through false diagnosis of gene absence. Genome Biol 8:402

    Article  Google Scholar 

  • Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP (2009a) Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol Evol 1:325–339

    Article  Google Scholar 

  • Zhaxybayeva O, Swithers K, Lapierre P, Fournier G, Bickhart D, DeBoy R, Nelson K, Nesbo C, Doolittle W, Gogarten J, Noll K (2009b) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 106:5865–5870

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation Assembling the Tree of Life program (DEB 0830024) for support. This paper was first presented at the workshop, Perspectives on the Tree of Life, sponsored by the Leverhulme Trust and held in Halifax, Nova Scotia, July, 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peter Gogarten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andam, C.P., Williams, D. & Gogarten, J.P. Natural taxonomy in light of horizontal gene transfer. Biol Philos 25, 589–602 (2010). https://doi.org/10.1007/s10539-010-9212-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-010-9212-8

Keywords

Navigation