Skip to main content

Idealized, Inaccurate but Successful: A Pragmatic Approach to Evaluating Models in Theoretical Ecology

Abstract

Ecologists attempt to understand the diversity of life with mathematical models. Often, mathematical models contain simplifying idealizations designed to cope with the blooming, buzzing confusion of the natural world. This strategy frequently issues in models whose predictions are inaccurate. Critics of theoretical ecology argue that only predictively accurate models are successful and contribute to the applied work of conservation biologists. Hence, they think that much of the mathematical work of ecologists is poor science. Against this view, I argue that model building is successful even when models are predictively inaccurate for at least three reasons: models allow scientists to explore the possible behaviors of ecological systems; models give scientists simplified means by which they can investigate more complex systems by determining how the more complex system deviates from the simpler model; and models give scientists conceptual frameworks through which they can conduct experiments and fieldwork. Critics often mistake the purposes of model building, and once we recognize this, we can see their complaints are unjustified. Even though models in ecology are not always accurate in their assumptions and predictions, they still contribute to successful science.

This is a preview of subscription content, access via your institution.

References

  1. H. Andrewartha C. Birch (1954) The Distribution of and Abundance of Animals University of Chicago Press Chicago

    Google Scholar 

  2. F.S. Bodenheimer (1928) ArticleTitleWelche Faktoren regulieren die Individuenzahl einer Insekternart in der Natur? Biologisches Zentralblatt 48 714–739

    Google Scholar 

  3. R. Boyd, P. Richerson. 1988. Simple models of complex phenomena. In: J. Dupre (eds). The Latest of the Best. MIT Press

  4. R. Brandon (1990) Adaptation and Environment Princerton University Press Princeton

    Google Scholar 

  5. R. Brandon (1993) Concepts and Methods in Evolutionary Biology Cambridge University Press Cambridge

    Google Scholar 

  6. N. Cartwright (1995) The Dappled World Cambridge University Press New York

    Google Scholar 

  7. T. Case (2000) An Illustrated Guide to Theoretical Ecology Cambridge University Press Cambridge

    Google Scholar 

  8. H. Caswell (1988) ArticleTitleTheory and Models in Ecology: A Different Perspective Ecol. Model. 43 33–44 Occurrence Handle10.1016/0304-3800(88)90071-3

    Article  Google Scholar 

  9. G. Cooper (1990) The explanatory tools of theoretical population biology PSA 1990 Vol. 2 Philosophy of Science Association East Lansing

    Google Scholar 

  10. G. Cooper (1993) ArticleTitleThe competition controversy in ecology Biol. Philos. 8 IssueID4 359–384 Occurrence Handle10.1007/BF00857684

    Article  Google Scholar 

  11. J.M. Cushing et al. (2003) Chaos in Ecology: Experimental Nonlinear Dynamics Academic Press London

    Google Scholar 

  12. D.L. DeAngelis (1975) ArticleTitleStability and connectance in food web models Ecology 55 238–243

    Google Scholar 

  13. S. Downes (1992) ArticleTitleThe importance of models in theorizing: a deflationary semantic view PSA 1992 1 142–153

    Google Scholar 

  14. M.R. Gardner W.R. Ashby (1970) ArticleTitleConnectance of largedynamical (Cybernetic) systems: Critical values for stability Nature 228 784 Occurrence Handle10.1038/228784a0 Occurrence Handle5472974

    Article  PubMed  Google Scholar 

  15. G.F. Gause (1935) The Struggle for Existence Williams and Wilkins Baltimore

    Google Scholar 

  16. R. Giere (1988) Explaining Science University of Chicago Press Chicago

    Google Scholar 

  17. R. Giere (1999) Science Without Laws University of Chicago press Chicago

    Google Scholar 

  18. M. Gilpin (1975) ArticleTitleStability of feasible predator-prey systems Nature 254 137–139 Occurrence Handle10.1038/254137a0

    Article  Google Scholar 

  19. P. Godfrey-Smith (2003) Theory and Reality University of Chicago Press Chicago

    Google Scholar 

  20. J. Griesmer (1990) Material models in biology PSA 1990 Vol. 2 Philosophy of Science Association East Lansing 79–93

    Google Scholar 

  21. A. Hastings et al. (1987) ArticleTitleChaos in ecology: is mother nature a strange attractor? Ann. Rev. Ecol. Syst. 24 1–33

    Google Scholar 

  22. D. Hausman (1992) Why economists should look under the hood? In Essays on Philosophy and Economic Methodology Cambridge University Press Cambridge

    Google Scholar 

  23. Howard L.O. and Fiske W.F. 1991. The Importation into the United States of the Parasites of the Gypsy-Moth and the Brown-Tail Moth. US Department of AgricultureBureau of Entomology Bulletin 91.

  24. P. Kareiva (1989) Renewing the dialogue between theory and experiments in population ecology J. Roughgarden R.M. May S.A. Levin (Eds) Perspectives in Ecological Theory Princeton University Press Princeton

    Google Scholar 

  25. S. Lawler (1993) ArticleTitleSpecies richness, species composition and population dynamics of protests in experimental microcosms J. Anim. Ecol. 62 711–719

    Google Scholar 

  26. Lawlor (1978) ArticleTitleA comment on randomly constructed model ecosystems Am. Nat. 112 445–447 Occurrence Handle10.1086/283286

    Article  Google Scholar 

  27. S. Levin (1980) ArticleTitleMathematics, ecology, and orinthology Auk 97 422–425

    Google Scholar 

  28. S. Levin (1981) ArticleTitleThe role of theoretical ecology in the description and understanding of populations in heterogeneous environments Am. Zool. 21 865–875

    Google Scholar 

  29. R. Levins (1985) Qualitative Modeling of Complex Systems Harvard University Press Cambridge

    Google Scholar 

  30. R.M. May (1973) The Stability and Complexity of Model Ecosystems Princeton University Press Princeton

    Google Scholar 

  31. R.M. May (1974) ArticleTitleBiological populations with non-overlapping generations: stable points, stable cycles, and chaos Science 186 645–647 Occurrence Handle4412202

    PubMed  Google Scholar 

  32. R.M. May (1975) ArticleTitleBiological populations obeying difference: stable points, stable cycles, and chaos J. Theor. Biol. 49 511–524 Occurrence Handle10.1016/0022-5193(75)90078-8

    Article  Google Scholar 

  33. R.M. May (1976) ArticleTitleSimple models with very complicated dynamics Nature 261 459–467 Occurrence Handle10.1038/261459a0 Occurrence Handle934280

    Article  PubMed  Google Scholar 

  34. R.M. May (1981) ArticleTitleThe role of theory in ecology Am. Zool. 21 903–910

    Google Scholar 

  35. R.M May (2002) The best possible time to be alive: the logistic map G. Farmelo (Eds) It Must be Beautiful: Great Equations of Modern Science Granta Books London

    Google Scholar 

  36. R. May G. Oster (1976) ArticleTitleBifurcations and dynamic complexity in simple ecological models Am. Nat. 110 573–599 Occurrence Handle10.1086/283092

    Article  Google Scholar 

  37. G. Mikkelson (1997) ArticleTitleMethods and metaphors in community ecology: the problem of defining stability Perspect. Sci. 5 481–498

    Google Scholar 

  38. M. Morgan M. Morrison (1999) Models as Mediators Cambridge University Press New York

    Google Scholar 

  39. A.J. Nicholson V.A. Bailey (1935) The Balance of Animal Populations, Part I Vol. 3 Proceedings of the Zoological Society London 551–598

    Google Scholar 

  40. G. Orians (1975) Diversity, stability, and maturity in natural ecosystems W.H. van Dobben R.H. Lowe-McConnel (Eds) Unifying Concepts in Ecology W. Junk The Hague 139–150

    Google Scholar 

  41. S. Orzack E. Sober (1994) ArticleTitleOptimality Models and the Tests of Adaptationism Naturalist 143 361–380 Occurrence Handle10.1086/285608

    Article  Google Scholar 

  42. R.H. Peters (1991) A Critique for Ecology Cambridge University Press Cambridge

    Google Scholar 

  43. E.C. Pielou (1974) Population and Community Ecology: Principles and Methods Gordon and Breach Science Publishers New York

    Google Scholar 

  44. E.C. Pielou (1981) ArticleTitleThe usefulness of ecological models: a stock-taking Quart. Rev. Biol. 56 17–31 Occurrence Handle10.1086/412081

    Article  Google Scholar 

  45. S. Pimm (1979) ArticleTitleComplexity and stability: Another look at MacArthur's original hypothesis Oikos 35 139–149

    Google Scholar 

  46. S. Pimm (1992) The Balance of Nature University of Chicago Press Chicago

    Google Scholar 

  47. J. Roughgarden (1979) The Theory of Population Genetics and Evolutionary Ecology Macmillan New York

    Google Scholar 

  48. J. Roughgarden (1984) ArticleTitleCompetition and theory in community ecology Am. Nat. 122 583–601 Occurrence Handle10.1086/284160

    Article  Google Scholar 

  49. K. Shrader-Frechette E. McCoy (1993) Method in Ecology Cambridge University Press Cambridge

    Google Scholar 

  50. D. Simberloff (1981) ArticleTitleThe sick science of ecology Eidema 1 49–54

    Google Scholar 

  51. H.S. Smith (1935) ArticleTitleThe role of biotic factors in the determination of population densities J. Econ. Entomol. 28 873–898

    Google Scholar 

  52. E. Sober (1996) ArticleTitleEvolution and optimality—feathers, bowling balls, and the thesis of adaptationalism Philos. Exchange 6 41–57

    Google Scholar 

  53. M. Soule (1985) Population Viability Analysis Cambridge University Press Cambridge

    Google Scholar 

  54. D. Strong (1983) ArticleTitleNatural variability and the manifold mechanisms of ecological communities Am. Nat. 122 636–660 Occurrence Handle10.1086/284164

    Article  Google Scholar 

  55. V. Volterra. 1926. Fluctuations in the Abundance of a Species Considered Mathematically. Nature 188

  56. W. Wimsatt (1980) Reductionist research strategies and their biases in the units of selection controversy T. Nickles (Eds) Scientific Discovery: Case Studies Dordrecht Reidel

    Google Scholar 

  57. W. Wimsatt (1987) False Models as a Means to Truer Theories M. Nitecki A. Hoffman (Eds) Biology Oxford University Press Oxford 23–55

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jay Odenbaugh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Odenbaugh, J. Idealized, Inaccurate but Successful: A Pragmatic Approach to Evaluating Models in Theoretical Ecology. Biol Philos 20, 231–255 (2005). https://doi.org/10.1007/s10539-004-0478-6

Download citation

Keywords

  • Accuracy
  • Ecology
  • Heuristic
  • Idealization
  • Mathematics
  • Model
  • Pragmatism
  • Prediction
  • Theory