Advertisement

Biologia Plantarum

, Volume 62, Issue 4, pp 663–670 | Cite as

Abscisic acid biosynthesis under water stress: anomalous behavior of the 9-cis-epoxycarotenoid dioxygenase1 (NCED1) gene in rice

  • S. S. Changan
  • K. Ali
  • V. Kumar
  • N. K. Garg
  • A. TyagiEmail author
Original papers
  • 183 Downloads

Abstract

The gene NCED1 encodes 9-cis-epoxycarotenoid dioxygenase, which catalyzes oxidative cleavage of 9-cis-epoxycarotenoids neoxanthin and violaxanthin to xanthoxin, a key step in the biosynthesis of abscisic acid (ABA) in higher plants. In the present study, the complete NCED1 of 1 917 bp was cloned and characterized from rice (Oryza sativa L. cv. N22) as no earlier reports were available for its characterization from the indica cultivar. The NCED1 had no intron and encoded a protein of 639 amino acids with a predicted molecular mass of 68.62 kD and pI of 6.07. The aliphatic index and grand average of hydropathicity were found to be 77.04 and -0.148, respectively. Multiple alignment analysis revealed that the sequence shared a high identity with the Oryza sativa japonica group (100 %) followed by Triticum aestivum (90 %), Hordeum vulgare (90 %), and Zea mays (89 %). The enzyme had a RPE65 domain of 476 amino acid residues. The RPE65 domain requires Fe(II) as a cofactor coordinated with 4 histidine residues and 3 glutamic acid residues. The phylogenic tree shows that NCED1 of japonica rice and NCED1 of indica rice were in the same group. They might have been evolved from a common ancestor. Analysis with a PSORT III tool shows that NCED is a chloroplastic protein. The real-time quantitative PCR and RNA-sequencing studies show that the expression of NCED1 was progressively reduced with increasing water stress, and a negative correlation between expression of OsNCED1 and severity of stress was established. Further, NCED1 expression negatively correlated with ABA accumulation under water stress whereas in some other species, its expression increased along with ABA accumulation. This might be due to feedback inhibition of the ABA biosynthesis in rice.

Additional key words

carotenoids membrane stability index phylogenetic tree relative water content 

Abbreviations

ABA

abscisic acid

MSI

membrane stability index

NCED

9-cis-epoxy-carotenoid dioxygenase

qPCR

quantitative polymerase chain reaction

RP-HPLC

reverse phase-high performance liquid chromatography

RWC

relative water content

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2018_807_MOESM1_ESM.pdf (497 kb)
Supplementary material, approximately 498 KB.

References

  1. Alet, A.I., Sanchez, D.H., Cuevas, J.C., Del Valle, S., Altabella, T., Tiburcio, A.F., Marco, F., Ferrando, A., Espasandín, F.D., González, M.E., Ruiz, O.A., Carrasco, P.: Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. - Plant Signal. Behav. 6: 278–286, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alexandre, M.S., Vandré, G.L., Morganna, P.N., Janivan, F., Liziane, M., Pedro, D. F.: Expression of NCED gene in colored cotton genotypes subjected to water stress. - Rev. bras. Eng. Agr. ambient. 20: 692–696, 2016.CrossRefGoogle Scholar
  3. Ali, K., Gujjar, R.S., Niwas, R., Gopal, M., Tyagi, A.: A rapid method for estimation of abscisic acid and characterization of aba regulated gene in response to water deficit stress from rice. - Amer. J. Plant Physiol. 6: 144–156, 2011.CrossRefGoogle Scholar
  4. Barr, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. - Aust. J. biol. Sci. 15: 413–428, 1962.CrossRefGoogle Scholar
  5. Boneh, U., Biton, I., Zheng, C., Schwartz, A., Ben-Ari, G.: Characterization of potential ABA receptors in Vitis vinifera. - Plant Cell Rep. 31: 311–321, 2012.CrossRefPubMedGoogle Scholar
  6. Burbidge, A., Grieve, T., Jackson, A., Thompson, A., Taylor, I.: Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wiltrelated tomato (Lycopersicon esculentum Mill.) library. - J. exp. Bot. 47: 2111–2112, 1997.CrossRefGoogle Scholar
  7. Chai, Y.M., Jia, H.F., Li, C.L., Dong, Q.H., Shen, Y.Y.: FaPYR1 is involved in strawberry fruit ripening. - J. exp. Bot. 62: 5079–5089, 2011.CrossRefPubMedGoogle Scholar
  8. Chernys, J.T., Zeevaart, J.A.: Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. - Plant Physiol. 124: 343–353, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cutler, A.J., Krochko, J.E.: Formation and breakdown of ABA. - Trends Plant Sci. 4: 472–478, 1999.CrossRefPubMedGoogle Scholar
  10. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., Abrams, S.R.: Abscisic acid: emergence of a core signaling network. - Annu. Rev. Plant Biol. 61: 651–679, 2010.CrossRefPubMedGoogle Scholar
  11. Estrada-Melo, A.C. Ma, C., Reid, M.S., Jiang, C.-Z.: Overexpression of an ABA biosynthesis gene using a stressinducible promoter enhances drought resistance in petunia. - Hort. Res. 2: 15013, 2015.CrossRefGoogle Scholar
  12. Hwang, S.G., Chen, H.C., Huang, W.Y., Chu, Y.C., Shii, C.T., Cheng, W.H.: Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. - Plant Sci. 178: 12–22, 2010.CrossRefGoogle Scholar
  13. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. - Plant J. 27: 325–333, 2001.CrossRefPubMedGoogle Scholar
  14. Iuchi, S., Kobayashi, M., Yamaguchi-Shinozaki, K., Shinozaki, K.: A stress inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. - Plant Physiol. 123: 553–652, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim, H., Hwang, H., Hong, J.W., Lee, Y.N., Ahn, I.P., Yoon, I.S., Yoo, S.D., Lee, S., Lee, S.C., Kim, B.G.: A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. - J. exp. Bot. 63: 1013–1024, 2012.CrossRefPubMedGoogle Scholar
  16. Lambers, H., Chapin, F. S., III, Pons, T.: Photosynthesis. - In: Lambers, H. (ed.): - Plant Physiology and Ecology. Pp. 11–99. Springer-Verlag, New York 2008.CrossRefGoogle Scholar
  17. Leung, J.M., Giraudat, J.: Abscisic acid signal transduction. - Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 199–222, 1998.CrossRefPubMedGoogle Scholar
  18. Liang, J., Yang, L., Chen, X., Li, L., Guo, D., Li, H., Zhang, B.: Cloning and characterization of the promoter of the 9-cis epoxycarotenoid dioxygenase gene in Arachis hypogaea L. - Biosci. Biotechnol. Biochem. 73: 2103–2106, 2009.CrossRefPubMedGoogle Scholar
  19. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2??C(T) method. - Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  20. Mansouri, H., Asrar, Z.: Effects of abscisic acid on content and biosynthesis of terpenoids in Cannabis sativa at vegetative stage. - Biol. Plant. 56: 153–156, 2012.CrossRefGoogle Scholar
  21. Mawlong, I., Ali, K., Kurup, D., Yadav, S., Tyagi, A.: Isolation and characterization of an AP2/ERF-type drought stress inducible transcription factor encoding gene from rice. - J. Plant Biochem. Biotechnol. 23: 42–51, 2014.CrossRefGoogle Scholar
  22. Mawlong, I., Ali, K., Srinivasan, R., Rai, R.D., Tyagi, A.: Functional validation of a drought-responsive AP2/ERF family transcription factor-encoding gene from rice in Arabidopsis. - Mol. Breed. 35: 163–177, 2015.CrossRefGoogle Scholar
  23. Muñoz-Espinoza, V.A., López-Climent, M.F., Casaretto, J.A., Gómez-Cadenas, A.: Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. - Front. Plant Sci. 6: 997, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nambara, E., Marion-Poll, A.: Abscisic acid biosynthesis and catabolism. - Annu. Rev. Plant Biol. 56: 165–185, 2005.CrossRefPubMedGoogle Scholar
  25. Pena-Cortes, H., Sanchez-Serrano, J.J., Mertens, R., Willmitzer, L., Prat, S.: Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. - Proc. nat. Acad. Sci. USA 86: 9851–9855, 1989.CrossRefPubMedGoogle Scholar
  26. Premachandra, G.S., Saneoka, H., Ogata, S.: Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soybean. - J. agr. Sci. 115: 63–66, 1990.CrossRefGoogle Scholar
  27. Qin, X., Zeevaart, J.A.D.: The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. - Proc. nat. Acad. Sci. USA 96: 15354–15361, 1999.CrossRefPubMedGoogle Scholar
  28. Qin, X., Zeevaart, J.A.D.: Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. - Plant Physiol. 128: 544–551, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rogers, S.O., Bendich, A.J.: Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. - Plant mol. Biol. 5: 69–76, 1985.CrossRefPubMedGoogle Scholar
  30. Saika, H., Okamoto, M., Miyoshi, K., Kushiro, T., Shinoda, S., Jikumaru, Y., Fujimoto, M., Arikawa, T., Takahashi, H., Ando, M., Arimura, S., Miyao, A., Hirochika, H., Kamiya, Y., Tsutsumi, N., Nambara, E., Nakazono, M.: Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8-hydroxylase in rice. - Plant Cell Physiol. 48: 287–298, 2007.CrossRefPubMedGoogle Scholar
  31. Sairam, R.K., Deshmukh, P.S., Shukla, D.S.: Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. - J. Agron. Crop Sci. 178: 171–177, 1997.CrossRefGoogle Scholar
  32. Santner, A., Calderon-Villalobos, L.I., Estelle, M.: Plant hormones are versatile chemical regulators of plant growth. - Nat. Chem. Biol. 5: 301–307, 2009.CrossRefPubMedGoogle Scholar
  33. Schwartz, S.H., Qin, X., Zeevaart, J.A.D.: Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. - Plant Physiol. 131: 1591–1601, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Singh, N.K., LaRosa, P.C., Handa, A.K., Hasegawa, P.M., Bressan, R.A.: Hormonal regulation of protein synthesis associated with salt tolerance in plant cells. - Proc. nat. Acad. Sci. USA 84: 739–743, 1987.CrossRefPubMedGoogle Scholar
  35. Sun, L., Wang, Y.P., Chen, P., Ren, J., Ji, K., Li, Q., Li, P., Dai, S.J., Leng, P.: Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. - J. exp. Bot. 62: 5659–5669, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Taylor, I.B., Burbidge, A., Thompson, A.J.: Control of abscisic acid synthesis. - J. exp. Bot. 51: 1563–1574, 2000.CrossRefPubMedGoogle Scholar
  37. Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A., Taylor, I.B.: Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. - Plant J. 23: 363–374, 2000.CrossRefPubMedGoogle Scholar
  38. Tian, L., DellaPenna, D., Zeevaart, J.A.D.: Effects of hydroxylated carotenoid deficiency on ABA accumulation in Arabidopsis. - Physiol. Plant. 122: 314–320, 2004.CrossRefGoogle Scholar
  39. Tong, S.-M., Xi, H.-X., Ai, K.-J., Hou, H.-S.: Overexpression of wheat TaNCED gene in Arabidopsis enhances tolerance to drought stress and delays seed germination. - Biol. Plant. 61: 64–72, 2017.CrossRefGoogle Scholar
  40. Xiong, L., Zhu, J.K.: Regulation of abscisic acid biosynthesis. - Plant Physiol. 133: 29–36, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. - Annu. Rev. Plant Biol. 57: 781–803, 2006.CrossRefPubMedGoogle Scholar
  42. Yang, J., Guo, Z.: Cloning of a 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) from Stylosanthes guianensis and its expression in response to abiotic stresses. - Plant Cell Rep. 26: 1383–1390, 2007.CrossRefPubMedGoogle Scholar
  43. Ye, N., Zhu, G., Liu, Y., Li, Y., Zhang, J.: ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. - Plant Cell Physiol. 52: 689–698, 2011.CrossRefPubMedGoogle Scholar
  44. Zeevaart, J.A.D.: Abscisic acid metabolism and its regulation. - In: Hooykaas, P.P.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 189–207. Elsevier, Amsterdam 1999.CrossRefGoogle Scholar
  45. Zhu, G., Ye, N., Zhang, J.: Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. - Plant Cell Physiol. 50: 644–651, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • S. S. Changan
    • 1
  • K. Ali
    • 1
  • V. Kumar
    • 2
  • N. K. Garg
    • 1
  • A. Tyagi
    • 1
    Email author
  1. 1.Division of BiochemistryIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Division of Basic SciencesIndian Institute of Pulse ResearchKanpurIndia

Personalised recommendations