Efficient virus-induced gene silencing in Brassica rapa using a turnip yellow mosaic virus vector

  • J. Yu
  • X.-D. Yang
  • Q. Wang
  • L.-W. Gao
  • Y. Yang
  • D. Xiao
  • T.-K. Liu
  • Y. Li
  • X.-L. Hou
  • C.-W. Zhang
Article
  • 1 Downloads

Abstract

Virus-induced gene silencing (VIGS) is a post-transcriptional gene silencing method used for unraveling gene functions. As an attractive alternative to mutant collections or stable transgenic plants, it has been widely used in reverse-genetics studies owing to its ease use and quick turnaround time. Turnip yellow mosaic virus (TYMV) has the ability to induce VIGS in Arabidopsis thaliana. However, the conventional vector construction is difficult and the efficiencies of the infection methods are low. Here, we improved the vector construction and viral infection methods, inserted an inverted-repeat fragment of the phytoene desaturase gene into a TYMV-derived vector by homologous recombination and transformed Brassica rapa with plasmid DNA harboring a cDNA copy of the TYMV genome through particle bombardment. An apparent photobleaching phenotype was detected and efficient VIGS was induced. An 80-bp fragment was sufficient to produce VIGS in leaves, stems, roots, flowers, siliques, and stalks of B. rapa. Because TYMV has a wide host range in Brassica, the VIGS system described here will contribute to the improvement of high-throughput technology and efficient functional research in B. rapa and other Brassicaceae crops.

Additional key words

particle bombardment photobleaching phylogenetic tree phytoene desaturase vector construction 

Abbreviations

CaLCuV

cabbage leaf curl virus

CP

coat protein

FPKM

reads per kilobase of exon model per million mapped reads

GADPH

glyceraldehyde-3-phosphate dehydrogenase

PDS

phytoene desaturase

PTGS

post-transcriptional gene silencing

TGMV

tomato golden mosaic virus

TMV

tobacco mosaic virus

TRV

tobacco rattle virus

TYMV

turnip yellow mosaic virus

VIGS

virus-induced gene silencing

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2018_803_MOESM1_ESM.pdf (468 kb)
Supplementary material, approximately 468 KB.

References

  1. Bai, C., Wang, P.Q., Fan, W.D., Fu, L., Wang, Z.N., Zhang, Z., Song, G.L., Zhang, J., Wu, H.: Analysis of the role of the drought-induced gene DRI15 and salinity-induced gene SI1 in aternanthera philoxeroides plasticity using a virus-based gene silencing tool. — Front. Plant Sci. 8: 262, 2017.Google Scholar
  2. Baulcombe, D.: Viruses and gene silencing in plants. — Arch. Virol. 7: 189–201, 1999.Google Scholar
  3. Benedito, V.A., Visser, P.B., Angenent, G.C., Krens, F.A.: The potential of virus-induced gene silencing for speeding up functional characterization of plant genes. — Genet. mol. Res. 3: 323–341, 2004.PubMedGoogle Scholar
  4. Burch-Smith, T.M., Anderson, J.C., Martin, G.B., Dinesh-Kumar, S.P.: Applications and advantages of virus-induced gene silencing for gene function studies in plants. — Plant J. 39: 734–746, 2004.CrossRefPubMedGoogle Scholar
  5. Campisi, L., Fambrini, M., Michelotti, V., Salvini, M., Giuntini, D., Pugliesi, C.: Phytoene accumulation in sunflower decreases the transcript levels of the phytoene synthase gene. — Plant Growth Regul. 48: 79–87, 2006.CrossRefGoogle Scholar
  6. Cheng, L., Li, H.P., Qu, B., Huang, T., Tu, J.X., Fu, T.D., Liao, Y.C.: Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. — Plant Cell Rep. 29: 371–381, 2010.CrossRefPubMedGoogle Scholar
  7. Dheda, K.., Huggett, J.F., Bustin, S.A., Johnson, M.A., Rook, G., Zumla, A.: Validation of housekeeping genes for normalizing RNA expression in real-time PCR. — Biotechniques 37: 112, 2004.PubMedGoogle Scholar
  8. Dinesh-Kumar, S.P., Anandalakshmi, R., Marathe, R., Schiff, M., Liu, Y.: Virus-induced gene silencing. — Methods mol. Biol. 236: 287–94, 2003.PubMedGoogle Scholar
  9. Fantini, E., Giuliano, G.: Virus-induced gene silencing as a tool to study tomato fruit biochemistry. — Plant Signal Transduction 1363: 65–78, 2016.CrossRefGoogle Scholar
  10. Faivre, R.O., Gilroy, E.M., Hrubikova, K., Hein, I., Millam, S., Loake, G.J., Birch, P., Taylor, M., Lacomme, C.: Potato virus X-induced gene silencing in leaves and tubers of potato. — Plant Physiol. 134: 1308–1316, 2004.CrossRefGoogle Scholar
  11. Gao, X., Wheeler, T., Li, Z., Kenerley, C.M., He, P., Shan, L.: Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. — Plant J. 66: 293–305, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jia, H., Shen, Y.: Virus-induced gene silencing in strawberry fruit. — Methods mol. Biol. 975: 211–218, 2013.CrossRefPubMedGoogle Scholar
  13. Juvale, P.S., Hewezi, T., Zhang, C.,. Kandoth, P.K., Mitchum, M.G., Hill, J.H., Whitham, S.A., Baum, T.J.: Temporal and spatial bean pod mottle virus-induced gene silencing in soybean. — Mol. Plant Pathol. 13: 1140–1148, 2012.CrossRefPubMedGoogle Scholar
  14. Kay, R., Chan, A., Daly, M., McPherson, J.: Duplication of CAMV-35S promoter sequences creates a strong enhancer for plant genes. — Sci. 236: 1299–1302, 1987.CrossRefGoogle Scholar
  15. Lacomme, C., Hrubikova, K., Hein, I.: Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. — Plant J. 34: 543–553, 2003.CrossRefPubMedGoogle Scholar
  16. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R.J., Thompson, D., Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. — Bioinformatics 23: 2947–2948, 2007.CrossRefPubMedGoogle Scholar
  17. Lindgren, L.O., Stalberg, K.G., Hoglund, A.S.: Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. — Plant Physiol. 132: 779–785, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu, Y.L., Schiff, M., Dinesh-Kumar, S. P.: Virus-induced gene silencing in tomato. — Plant J. 31: 777–786, 2002.CrossRefPubMedGoogle Scholar
  19. Liu, Y.L., Schiff, M., Marathe, R., Dinesh-Kumar, S.P.: Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. — Plant J. 30: 415–429, 2002.CrossRefPubMedGoogle Scholar
  20. Liu, D., Hu, R., Palla, K.J., Tuskan, G.A., Yang, X.: Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. — Curr. Opin. Plant Biol. 30: 70–77, 2016.CrossRefPubMedGoogle Scholar
  21. MacFarlane, S.A.: Molecular biology of the tobraviruses. — J. gen. Virol. 80: 2799–2807, 1999.CrossRefPubMedGoogle Scholar
  22. Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C., Burgyan, J.: Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. — J. Virol. 79: 7812–7818, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Peele, C., Jordan, C.V., Muangsan, N., Turnage, M., Egelkrout, E., Eagle, P., Hanley-Bowdoin, L., Robertson, D.: Silencing of a meristematic gene using geminivirus-derived vectors. — Plant J. 27: 357–366, 2001.CrossRefPubMedGoogle Scholar
  24. Pflieger, S., Blanchet, S., Camborde, L., Drugeon, G., Rousseau, A., Noizet, M., Planchais, S., Jupin, I.: Efficient virus-induced gene silencing in Arabidopsis using a ‘onestep“ TYMV-derived vector. — Plant J. 56: 678–690, 2008.CrossRefPubMedGoogle Scholar
  25. Pflieger, S., Richard, M.M.S., Blanchet, S., Meziadi, C., Geffroy, V.: VIGS technology: an attractive tool for functional genomics studies in legumes. — Funct. Plant Biol. 40: 1234–1248, 2013.CrossRefGoogle Scholar
  26. Ratcliff, F., Martin-Hernandez, A.M., Baulcombe, D.C.: Tobacco rattle virus as a vector for analysis of gene function by silencing. — Plant J. 25: 237–245, 2001.CrossRefPubMedGoogle Scholar
  27. Robertson, D.: VIGS vectors for gene silencing: many targets, many tools. — Annu. Rev. Plant Biol. 55: 495–519, 2004.CrossRefPubMedGoogle Scholar
  28. Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative C-T method. — Nat. Protocols 3: 1101–1108, 2008.CrossRefPubMedGoogle Scholar
  29. Schuck, J., Gursinsky, T., Pantaleo, V., Burgyan, J., Behrens, S.E.: AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. — Nucl. Acids Res. 41: 5090–5103, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Senthil-Kumar, M., Mysore, K.S.: New dimensions for VIGS in plant functional genomics. — Trends Plant Sci. 16: 656–665, 2011.CrossRefPubMedGoogle Scholar
  31. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S.: MEGA6: molecular evolutionary genetic analysis version 6.0. — Mol. Biol. Evol. 30: 2725–2729, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tang, J., Wang, F., Wang, Z., Huang, Z., Xiong, A., Hou, X.: Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (Brassica campestris ssp. chinensis). — BMC Plant Biol. 13: 188, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tijsterman, M., Plasterk, R.H.A.: Dicers at RISC: the mechanism of RNAi. — Cell 117: 1–3, 2004.CrossRefPubMedGoogle Scholar
  34. Turnage, M.A., Muangsan, N., Peele, C.G., Robertson, D.: Geminivirus-based vectors for gene silencing in Arabidopsis. — Plant J. 30: 107–114, 2002.CrossRefPubMedGoogle Scholar
  35. Valentine, T., Shaw, J., Blok, V.C., Phillips, M.S., Oparka, K.J., Lacomme, C.: Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. — Plant Physiol. 136: 3999–4009, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Venegas, A.R., Zhang, Y.P., Konrad, K., Lomas, T.: Flowering without vernalization in winter canola (Brassica napus): use of virus-induced gene silencing (VIGS) to accelerate genetic gain. — Nova Scientia 3:29–50, 2010.CrossRefGoogle Scholar
  37. Voinnet, O.: Induction and suppression of RNA silencing: insights from viral infections. — Nat. Rev. Genet. 6: 206–210, 2005.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • J. Yu
    • 1
  • X.-D. Yang
    • 2
  • Q. Wang
    • 3
  • L.-W. Gao
    • 1
  • Y. Yang
    • 1
  • D. Xiao
    • 1
  • T.-K. Liu
    • 1
  • Y. Li
    • 1
  • X.-L. Hou
    • 1
  • C.-W. Zhang
    • 1
  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjing, JiangsuP.R. China
  2. 2.The Protected Horticulture InstituteShanghai Academy of Agricultural SciencesShanghaiP.R. China
  3. 3.Faculty of HorticultureJingling Institute of TechnolgoyNanjing, JiangsuP.R. China

Personalised recommendations