The role of plant cation/proton antiporter gene family in salt tolerance

  • Q. Jia
  • C. Zheng
  • S. Sun
  • H. Amjad
  • K. Liang
  • W. Lin


Salinity is one of the major abiotic constraints to agriculture. The physiological and molecular mechanisms of salt tolerance have been studied in plants for many years. The regulation of osmosis and ion homeostasis is crucial. A lot of important components involved in plant responses to salt stress have been identified. Among them, ion transporters and channels take an essential role in ion homeostasis, mainly for Na+, Cl-, and K+. Until now, many cation antiporters important for salt tolerance in plants have been characterized. Among them, the monovalent cation/proton antiporters (CPA) family is one of the most important families, including sodium proton exchangers (NHXs), K+-efflux antiporters (KEAs), and cation/H+ exchangers (CHXs). Here, the current knowledge of the plant CPA family in responses to salt stress was reviewed. The regulation mechanisms were also included and discussed.

Additional key words

Na+/H+ exchanger K+-efflux antiporter cation/H+ exchanger 



abscisic acid-insensitive 2


calmodulin-like protein 15


calcineurin B-like


coding sequence


cation/H+ exchanger


CBL-interacting serine/threonine-protein kinase 24


cation/proton antiporter


ethylene-insensitive 3


endoplasmic reticulum


ethylene and salt-inducible ERF1






high-affinity K+ transporter 5


high-affinity K+ transporter


K+-efflux antiporter


K+ uptake transporter


sodium potassium root defective 3


sodium proton exchanger


non selective channels


plasma membrane


plasma membrane H+-ATPase


plasma membrane H+-PPase


pre-vacuolar compartments


reactive oxygen species


SOS3-like calcium binding protein 8


salt overly sensitive


transcription factor


trans-Golgi network


universal stress protein


untranslated region


tonoplast H+-ATPase


tonoplast H+-PPase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2018_801_MOESM1_ESM.pdf (78 kb)
Supplementary material, approximately 77.6 KB.


  1. Adem, G.D., Roy, S.J., Plett, D.C., Zhou, M., Bowman, J.P., Shabala, S.: Expressing AtNHX1 in barley (Hordium vulgare L.) does not improve plant performance under saline conditions. — Plant Growth Regul. 77: 289–297, 2015.CrossRefGoogle Scholar
  2. Almeida, D.M., Oliveira, M.M., Saibo, N.J.M.: Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. — Genet. mol. Biol. 40: 326–345, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amin, U.S.M., Biswas, S., Elias, S.M., Razzaque, S., Haque, T., Malo, R., Seraj, Z.I.: Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9 kb coding region with 5′ UTR in transgenic lines of rice. — Front. Plant Sci. 7.: 14, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  4. An, R., Chen, Q.-J., Chai, M.-F., Lu, P.-L., Su, Z., Qin, Z.-X., Chen, J., Wang, X.-C.: AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. — Plant J. 49: 718–728, 2007.PubMedCrossRefGoogle Scholar
  5. Andres, Z., Perez-Hormaeche, J., Leidi, E.O., Schlucking, K., Steinhorst, L., McLachlan, D.H., Schumacher, K., Hetherington, A.M., Kudla, J., Cubero, B., Pardo, J.M.: Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. — Proc. nat. Acad. Sci. USA 111: E1806–1814, 2014.CrossRefGoogle Scholar
  6. Apse, M.P., Aharon, G.S., Snedden, W.A., Blumwald, E.: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. — Science 285: 1256–1258, 1999.PubMedCrossRefGoogle Scholar
  7. Apse, M.P., Blumwald, E.: Na+ transport in plants. — FEBS Lett. 581: 2247–2254, 2007.PubMedCrossRefGoogle Scholar
  8. Apse, M.P., Sottosanto, J.B., Blumwald, E.: Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. — Plant J. 36: 229–239, 2003.PubMedCrossRefGoogle Scholar
  9. Aranda-Sicilia, M.N., Aboukila, A., Armbruster, U., Cagnac, O., Schumann, T., Kunz, H.-H., Jahns, P., Rodriguez-Rosales, M.P., Sze, H., Venema, K.: Envelope K+/H+ antiporters AtKEA1 and AtKEA2 function in plastid development. — Plant Physiol. 172: 441–449, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aranda-Sicilia, M.N., Cagnac, O., Chanroj, S., Sze, H., Rodriguez-Rosales, M.P., Venema, K.: Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K+/H+ antiporter with a chloroplast transit peptide. — Biochim. biophys. Acta 1818: 2362–2371, 2012.PubMedCrossRefGoogle Scholar
  11. Assaha, D.V.M., Ueda, A., Saneoka, H., Al-Yahyai, R., Yaish, M.W.: The Role of Na+ and K+ transporters in salt stress adaptation in glycophytes. — Front. Physiol. 8: 509, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barbier-Brygoo, H., De Angeli, A., Filleur, S., Frachisse, J.-M., Gambale, F., Thomine, S., Wege, S.: Anion channels/transporters in plants: from molecular bases to regulatory networks. — Annu. Rev. Plant Biol. 62: 25–51, 2011.PubMedCrossRefGoogle Scholar
  13. Barragan, V., Leidi, E.O., Andres, Z., Rubio, L., De Luca, A., Fernandez, J.A., Cubero, B., Pardo, J.M.: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. — Plant Cell 24: 1127–1142, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bertorello, A., Zhu, J.: SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways. — Eur. J. Physiol. 458: 613–619, 2009.CrossRefGoogle Scholar
  15. Bassil, E., Blumwald, E.: The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. — Curr. Opin. Plant Biol. 22: 1–6, 2014.PubMedCrossRefGoogle Scholar
  16. Bassil, E., Ohto, M., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T., Blumwald, E.: The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. — Plant Cell 23: 224–239, 2011a.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M.-A., Ushijima, K., Nakano, R., Esumi, T., Coku, A., Belmonte, M., Blumwald, E.: The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. — Plant Cell 23: 3482–3497, 2011b.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brett, C.L., Donowitz, M., Rao, R.: Evolutionary origins of eukaryotic sodium/proton exchangers. — Amer. J. Physiol. Cell Physiol. 288: C223–C239, 2005.CrossRefGoogle Scholar
  19. Brini, F., Gaxiola, R.A., Berkowitz, G.A., Masmoudi, K.: Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. — Plant Physiol. Biochem. 43: 347–354, 2005.PubMedCrossRefGoogle Scholar
  20. Brini, F., Hanin, M., Mezghani, I., Berkowitz, G.A., Masmoudi, K.: Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. — J. exp. Bot. 58: 301–308, 2007.PubMedCrossRefGoogle Scholar
  21. Cellier, F., Conejero, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., Casse, F.: Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. — Plant J. 39: 834–846, 2004.PubMedCrossRefGoogle Scholar
  22. Chanroj, S., Lu, Y., Padmanaban, S., Nanatani, K., Uozumi, N., Rao, R., Sze, H.: Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. — J. biol. Chem. 286: 33931–33941, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chanroj, S., Padmanaban, S., Czerny, D.D., Jauh, G.-Y., Sze, H.: K+ transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system: role in reproduction and seed set. — Mol. Plant 6: 1226–1246, 2013.PubMedCrossRefGoogle Scholar
  24. Chanroj, S., Wang, G., Venema, K., Zhang, M.W., Delwiche, C.F., Sze, H.: Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. — Front. Plant Sci. 3: 25, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen, H., Chen, X., Wu, B., Yuan, X., Zhang, H., Cui, X., Liu, X.: Whole-genome identification and expression analysis of KEA and NHX antiporter family under abiotic stress in soybean. — J. integr. Agr. 6: 1171–1183, 2015.CrossRefGoogle Scholar
  26. Chen, Y., Ma, J., Miller, A.J., Luo, B., Wang, M., Zhu, Z., Ouwerkerk, P.B.F.: OsCHX14 is involved in the K+ homeostasis in rice (Oryza sativa) flowers. — Plant Cell Physiol. 57: 1530–1543, 2016.PubMedCrossRefGoogle Scholar
  27. Chung, J.-S., Zhu, J.-K., Bressan, R.A., Hasegawa, P.M., Shi, H.: Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. — Plant J. 53: 554–565, 2008.PubMedCrossRefGoogle Scholar
  28. Craig Plett, D., Moller, I.S.: Na+ transport in glycophytic plants: what we know and would like to know. — Plant Cell Environ. 33: 612–626, 2010.PubMedCrossRefGoogle Scholar
  29. Czerny, D.D., Padmanaban, S., Anishkin, A., Venema, K., Riaz, Z., Sze, H.: Protein architecture and core residues in unwound α-helices provide insights to the transport function of plant AtCHX17. — Biochim. biophys. Acta 1858: 1983–1998, 2016.PubMedCrossRefGoogle Scholar
  30. Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G., Schroeder, J.I.: Plant salt-tolerance mechanisms. — Trends Plant Sci. 19: 371–379, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Evans, A.R., Hall, D., Pritchard, J., Newbury, H.J.: The roles of the cation transporters CHX21 and CHX23 in the development of Arabidopsis thaliana. — J. exp. Bot. 63: 59–67, 2012.PubMedCrossRefGoogle Scholar
  32. Feki, K., Brini, F., Ben Amar, S., Saibi, W., Masmoudi, K. Comparative functional analysis of two wheat Na+/H+ antiporter SOS1 promoters in Arabidopsis thaliana under various stress conditions. — J. appl. Genet. 56: 15–26, 2015.PubMedCrossRefGoogle Scholar
  33. Feki, K., Quintero, F.J., Khoudi, H., Leidi, E.O., Masmoudi, K., Pardo, J.M., Brini, F.: A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. — Plant Cell Rep. 33: 277–288, 2014.PubMedCrossRefGoogle Scholar
  34. Feki, K., Quintero, F.J., Pardo, J.M., Masmoudi, K.: Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. — Plant mol. Biol. 76: 545–556, 2011.PubMedCrossRefGoogle Scholar
  35. Feki, K., Tounsi, S., Masmoudi, K., Brini, F.: The durum wheat plasma membrane Na+/H+ antiporter SOS1 is involved in oxidative stress response. — Protoplasma 254: 1725–1734, 2017.PubMedCrossRefGoogle Scholar
  36. Fukuda, A., Nakamura, A., Hara, N., Toki, S., Tanaka, Y.: Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. — Planta 233: 175–188, 2011.PubMedCrossRefGoogle Scholar
  37. Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H., Tanaka, Y.: Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. — Plant Cell Physiol. 45: 146–159, 2004.PubMedCrossRefGoogle Scholar
  38. Galvez, F.J., Baghour, M., Hao, G., Cagnac, O., Rodriguez-Rosales, M.P., Venema, K.: Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. — Plant Physiol. Biochem. 51: 109–115, 2012.PubMedCrossRefGoogle Scholar
  39. Garciadeblas, B., Haro, R., Benito, B.: Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria. — Plant mol. Biol. 63: 479–490, 2007.PubMedCrossRefGoogle Scholar
  40. Guan, R., Qu, Y., Guo, T., Yu, L., Liu, Y., Jiang, J., Chen, J., Ren, Y., Liu, G., Tian, L., Jin, L., Liu, Z., Hong, H., Chang, R., Gilliham, M., Qiu, L.: Salinity tolerance in soybean is modulated by natural variation in GmSALT3. — Plant J. 80: 937–950, 2014.PubMedCrossRefGoogle Scholar
  41. Gupta, B., Huang, B.: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. — Int. J. Genomics 2014: 701596, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Halfter, U., Ishitani, M., Zhu, J.K.: The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. — Proc. nat. Acad. Sci. USA 97: 3735–3740, 2000.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hall, D., Evans, A.R., Newbury, H.J., Pritchard, J.: Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. — J. exp. Bot. 57: 1201–1210, 2006.PubMedCrossRefGoogle Scholar
  44. Hamaji, K., Nagira, M., Yoshida, K., Ohnishi, M., Oda, Y., Hasezawa, S., Nakano, A., Hara-Nishimura, I., Maeshima, M., Fukaki, H., Mimura, T.: Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. — Plant Cell Physiol. 50: 2023–2033, 2009.PubMedCrossRefGoogle Scholar
  45. Hamam, A.M., Britto, D.T., Flam-Shepherd, R., Kronzucker, H.J.: Measurement of differential Na+ efflux from apical and bulk root zones of intact barley and Arabidopsis plants. — Front. Plant Sci. 7: 272, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hamamoto, S., Horie, T., Hauser, F., Deinlein, U., Schroeder, J.I., Uozumi, N.: HKT transporters mediate salt stress resistance in plants: from structure and function to the field. — Curr. Opin. Biotechnol. 32: 113–120, 2015.PubMedCrossRefGoogle Scholar
  47. Han, L., Li, J.L., Wang, L., Shi, W.M., Su, Y.H.: Identification and localized expression of putative K+/H+ antiporter genes in Arabidopsis. — Acta Physiol. Plant. 37: 101, 2015.CrossRefGoogle Scholar
  48. Hernández, A., Jiang, X., Cubero, B., Nieto, P.M., Bressan, R.A., Hasegawa, P.M., Pardo, J.M.: Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity. — J. biol. Chem. 284: 14276–14285, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Huertas, R., Rubio, L., Cagnac, O., García-Sánchez, M.J., Alché, J.D.D., Venema, K., Fernández, J.A., Rodríguez-Rosales, M.P.: The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. — Plant Cell Environ. 36: 2135–2149, 2013.PubMedCrossRefGoogle Scholar
  50. Ishitani, M., Liu, J., Halfter, U., Kim, C.S., Shi, W., Zhu, J.K.: SOS3 function in plant salt tolerance requires Nmyristoylation and calcium binding. — Plant Cell 12: 1667–1678, 2000.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ji, H., Pardo, J.M., Batelli, G., Van Oosten, M.J., Bressan, R.A., Li, X.: The Salt Overly Sensitive (SOS) pathway: established and emerging roles. — Mol. Plants 6: 275–286, 2013.CrossRefGoogle Scholar
  52. Jia, B., Sun, M., DuanMu, H., Ding, X., Liu, B., Zhu, Y., Sun, X.: GsCHX19.3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. — Sci. Rep. 7: 9423, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jiang, J., Shi, H.: Signaling control of SOS1 mRNA stability. — Plant Signal. Behav. 3: 687–688, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Katschnig, D., Bliek, T., Rozema, J., Schat, H.: Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya. — Plant Sci. 234: 144–154, 2015.PubMedCrossRefGoogle Scholar
  55. Kim, B.-G., Waadt, R., Cheong, Y.H., Pandey, G.K., Dominguez-Solis, J.R., Schültke, S., Lee, S.C., Kudla, J., Luan, S.: The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. — Plant J. 52: 473–484, 2007.PubMedCrossRefGoogle Scholar
  56. Kim, W.-Y., Ali, Z., Park, H.J., Park, S.J., Cha, J.-Y., Perez-Hormaeche, J., Quintero, F.J., Shin, G., Kim, M.R., Qiang, Z., Ning, L., Park, H.C., Lee, S.Y., Bressan, R.A., Pardo, J.M., Bohnert, H.J., Yun, D.-J.: Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. — Natur. Commun. 4: 1352, 2013.CrossRefGoogle Scholar
  57. Kronzucker, H.J., Britto, D.T.: Sodium transport in plants: a critical review. — New Phytol. 189: 54–81, 2011.PubMedCrossRefGoogle Scholar
  58. Kunz, H.-H., Gierth, M., Herdean, A., Satoh-Cruz, M., Kramer, D.M., Spetea, C., Schroeder, J.I.: Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. — Proc. nat. Acad. Sci. USA 111: 7480–7485, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Leidi, E.O., Barragán, V., Rubio, L., El-Hamdaoui, A., Ruiz, M.T., Cubero, B., Fernández, J.A., Bressan, R.A., Hasegawa, P.M., Quintero, F.J., Pardo, J.M.: The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. — Plant J. 61: 495–506, 2010.PubMedCrossRefGoogle Scholar
  60. Li, H.-T., Liu, H., Gao, X.-S., Zhang, H.: Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress. — Biochem. biophys. Res. Commun. 382: 637–641, 2009.PubMedCrossRefGoogle Scholar
  61. Li, W.-Y.F., Wong, F.-L., Tsai, S.-N., Phang, T.-H., Shao, G., Lam, H.-M.: Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. — Plant Cell Environ. 29: 1122–1137, 2006.PubMedCrossRefGoogle Scholar
  62. Liu, H., Tang, R., Zhang, Y., Wang, C., Lv, Q., Gao, X., Li, W., Zhang, H.: AtNHX3 is a vacuolar K+/H+ antiporter required for low-potassium tolerance in Arabidopsis thaliana. — Plant Cell Environ. 33: 1989–1999, 2010.PubMedCrossRefGoogle Scholar
  63. Liu, H., Wang, Q., Yu, M., Zhang, Y., Wu, Y., Zhang, H.: Transgenic salt-tolerant sugar beet ( Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. — Plant Cell Environ. 31: 1325–1334, 2008.PubMedCrossRefGoogle Scholar
  64. Lu, Y., Chanroj, S., Zulkifli, L., Johnson, M.A., Uozumi, N., Cheung, A., Sze, H.: Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. — Plant Cell 23: 81–93, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Luo, Q., Zhao, Z., Li, D.K., Zhang, Y., Xie, L.F., Peng, M.F., Yuan, S., Yang, Y.: Overexpression of NaKR3 enhances salt tolerance in Arabidopsis. — Genet. mol. Res. 15: gmr.15016378, 2016.Google Scholar
  66. Ma, Y.-C., Augé, R.M., Dong, C., Cheng, Z.-M.M.: Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta-analysis. — Plant Biotechnol. J. 15: 162–173, 2017.PubMedCrossRefGoogle Scholar
  67. Maathuis, F.J.M., Filatov, V., Herzyk, P., Krijger, G.C., Axelsen, K.B., Chen, S., Green, B.J., Li, Y., Madagan, K.L., Sánchez-Fernández, R., Forde, B.G., Palmgren, M.G., Rea, P.A., Williams, L.E., Sanders, D., Amtmann, A.: Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. — Plant J. 35: 675–692, 2003.PubMedCrossRefGoogle Scholar
  68. Mansour, M.M.F.: The plasma membrane transport systems and adaptation to salinity. — J. Plant Physiol. 171: 1787–1800, 2014.PubMedCrossRefGoogle Scholar
  69. Maresova, L., Sychrova, H.: Arabidopsis thaliana CHX17 gene complements the kha1 deletion phenotypes in Saccharomyces cerevisiae. — Yeast 23: 1167–1171, 2006.PubMedCrossRefGoogle Scholar
  70. Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.-K., Pardo, J.M., Quintero, F.J.: Conservation of the salt overly sensitive pathway in rice. — Plant Physiol. 143: 1001–1112, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mäser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H. Talke, I.N., Amtmann, A., Maathuis, F.J., Sanders, D., Harper, J.F., Tchieu, J., Gribskov, M., Persans, M.W., Salt, D.E., Kim, S.A., Guerinot, M.L.: Phylogenetic relationships within cation transporter families of Arabidopsis. — Plant Physiol. 126: 1646–1667, 2001.PubMedPubMedCentralCrossRefGoogle Scholar
  72. McCubbin, T., Bassil, E., Zhang, S., Blumwald, E.: Vacuolar Na+/H+ NHX-type antiporters are required for cellular K+ homeostasis, microtubule organization and directional root growth. — Plants 3: 409–426, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mishra, S., Alavilli, H., Lee, B., Panda, S.K., Sahoo, L.: Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mungbean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. — PLoS ONE 9: e106678, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Monihan, S.M., Magness, C.A., Yadegari, R., Smith, S.E., Schumaker, K.S.: Arabidopsis CALCINEURIN B-LIKE10 functions independently of the SOS pathway during reproductive development in saline conditions. — Plant Physiol. 171: 369–379, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mottaleb, S.A., Rodríguez-Navarro, A., Haro, R.: Knockouts of Physcomitrella patens CHX1 and CHX2 transporters reveal high complexity of potassium homeostasis. — Plant Cell Physiol. 54: 1455–1468, 2013.PubMedCrossRefGoogle Scholar
  76. Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.PubMedCrossRefGoogle Scholar
  77. Nie, W.-X., Xu, L., Yu, B.-J.: A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. — Protoplasma 252: 127–134, 2015.PubMedCrossRefGoogle Scholar
  78. Núñez-Ramírez, R., Sánchez-Barrena, M.J., Villalta, I., Vega, J.F., Pardo, J.M., Quintero, F.J., Martinez-Salazar, J., Albert, A.: Structural insights on the plant salt-overlysensitive 1 (SOS1) Na+/H+ antiporter. — J. mol. Biol. 424: 283–294, 2012.PubMedCrossRefGoogle Scholar
  79. Oh, D.-H., Leidi, E., Zhang, Q., Hwang, S.-M., Li, Y., Quintero, F.J., Jiang, X., D'Urzo, M.P., Lee, S.Y., Zhao, Y., Bahk, J.D., Bressan, R.A., Yun, D.-J., Pardo, J.M., Bohnert, H.J.: Loss of halophytism by interference with SOS1 expression. — Plant Physiol. 151: 210–222, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ohta, M., Guo, Y., Halfter, U., Zhu, J.-K.: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. — Proc. nat. Acad. Sci. USA 100: 11771–11776, 2003.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Olías, R., Eljakaoui, Z., Li, J., De Morales, P.A., Marín-Manzano, M.C., Pardo, J.M., Belver, A.: The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. — Plant Cell Environ. 32: 904–916, 2009.PubMedCrossRefGoogle Scholar
  82. Padmanaban, S., Chanroj, S., Kwak, J.M., Li, X., Ward, J.M., Sze, H.: Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. — Plant Physiol. 144: 82–93, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Padmanaban, S., Czerny, D.D., Levin, K.A., Leydon, A.R., Su, R.T., Maugel, T.K., Zou, Y., Chanroj, S., Cheung, A.Y., Johnson, M.A., Sze, H.: Transporters involved in pH and K+ homeostasis affect pollen wall formation, male fertility, and embryo development. — J. exp. Bot. 68: 3165–3178, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pardo, J.M., Cubero, B., Leidi, E.O., Quintero, F.J.: Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. — J. exp. Bot. 57: 1181–1199, 2006.PubMedCrossRefGoogle Scholar
  85. Pehlivan, N., Sun, L., Jarrett, P., Yang, X., Mishra, N., Chen, L., Kadioglu, A., Shen, G., Zhang, H.: Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. — Plant Cell Physiol. 57: 1069–1084, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Phang, T.-H., Shao, G., Liao, H., Yan, X., Lam, H.-M.: High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of “Pi-tolerant” soybean. — Physiol. Plant. 135: 412–425, 2009.PubMedCrossRefGoogle Scholar
  87. Pires, I.S., Negrão, S., Pentony, M.M., Abreu, I.A., Oliveira, M.M., Purugganan, M.D.: Different evolutionary histories of two cation/proton exchanger gene families in plants. — BMC Plant Biol. 13: 97, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Puerma, E., Aguade, M.: Polymorphism at genes involved in salt tolerance in Arabidopsis thaliana (Brassicaceae). — Amer. J. Bot. 100: 384–390, 2013.CrossRefGoogle Scholar
  89. Qi, X., Li, M.-W., Xie, M., Liu, X., Ni, M., Shao, G., Song, C., Kay-Yuen Yim, A., Tao, Y., Wong, F.-L., Isobe, S., Wong, C.-F., Wong, K.-S., Xu, C., Li, C., Wang, Y., Guan, R., Sun, F., Fan, G., Xiao, Z., Zhou, F., Phang, T.-H., Liu, X., Tong, S.-W., Chan, T.-F., Yiu, S.-M., Tabata, S., Wang, J., Xu, X., Lam, H.-M.: Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. — Natur. Commun. 5: 4340, 2014.CrossRefGoogle Scholar
  90. Qiu, Q.-S.: Plant endosomal NHX antiporters: activity and function. — Plant Signal. Behav. 11: e1147643, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Qiu, Q.-S., Barkla, B.J., Vera-Estrella, R., Zhu, J.-K.: Schumaker, K.S. Na+/H+ exchange activity in the plasma membrane of Arabidopsis. — Plant Physiol. 132: 1041–1052, 2003.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Qiu, Q.-S., Guo, Y., Dietrich, M.A., Schumaker, K.S., Zhu, J.-K.: Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. — Proc. nat. Acad. Sci. USA 99: 8436–8441, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Qiu, Q.-S., Guo, Y., Quintero, F.J., Pardo, J.M., Schumaker, K.S., Zhu, J.-K.: Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive (SOS) pathway. — J. biol. Chem. 279: 207–215, 2004.PubMedCrossRefGoogle Scholar
  94. Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., Shang, M., Chen, S., Pardo, J.M., Guo, Y.: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. — Plant Cell 19: 1415–1431, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Quan, R., Wang, J., Yang, D., Zhang, H., Zhang, Z., Huang, R.: EIN3 and SOS2 synergistically modulate plant salt tolerance. — Sci. Rep. 7: 44637, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Quintero, F.J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.-Y., Ali, Z., Fujii, H., Mendoza, I., Yun, D.-J., Zhu, J.-K., Pardo, J.M.: Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. — Proc. nat. Acad. Sci. USA 108: 2611–2616, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ramezani, A., Niazi, A., Abolimoghadam, A.A., Zamani Babgohari, M., Deihimi, T., Ebrahimi, M., Akhtardanesh, H., Ebrahimie, E.: Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress. mol. Biotechnol. 53: 189–197, 2013.PubMedCrossRefGoogle Scholar
  98. Reguera, M., Bassil, E., Blumwald, E.: Intracellular NHX-type cation/H+ antiporters in plants. — Mol. Plant 7: 261–263, 2014.PubMedCrossRefGoogle Scholar
  99. Reguera, M., Bassil, E., Tajima, H., Wimmer, M., Chanoca, A., Otegui, M.S., Paris, N., Blumwald, E.: pH regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis. — Plant Cell 27: 1200–1217, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ren, S., Lyle, C., Jiang, G., Penumala, A.: Soybean Salt Tolerance 1 (GmST1) reduces ROS production, enhances ABA sensitivity, and abiotic stress tolerance in Arabidopsis thaliana. — Front. Plant Sci. 7: 445, 2016.PubMedPubMedCentralGoogle Scholar
  101. Rodríguez-Rosales, M.P., Gálvez, F.J., Huertas, R., Aranda, M.N., Baghour, M., Cagnac, O., Venema, K.: Plant NHX cation/proton antiporters. — Plant Signal. Behav. 4: 265–276, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rodriguez-Rosales, M.P., Jiang, X., Gálvez, F.J., Aranda, M.N., Cubero, B., Venema, K.: Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. — New Phytol. 179: 366–377, 2008.PubMedCrossRefGoogle Scholar
  103. Roy, S.J., Negrão, S., Tester, M.: Salt resistant crop plants. — Curr. Opin. Biotechnol. 26: 115–124, 2014.PubMedCrossRefGoogle Scholar
  104. Saier, M.H., Reddy, V.S., Tamang, D.G., Västermark, A.: The transporter classification database. — Nucl. Acids Res. 42: D251–D258, 2014.PubMedCrossRefGoogle Scholar
  105. Senadheera, P., Singh, R.K., Maathuis, F.J.M.: Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance. — J. exp. Bot. 60: 2553–2563, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Shabala, L., Cuin, T.A., Newman, I.A., Shabala, S.: Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. — Planta 222: 1041–1050, 2005.PubMedCrossRefGoogle Scholar
  107. Shi, H., Ishitani, M., Kim, C., Zhu, J.K.: The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. — Proc. nat. Acad. Sci. USA 97: 6896–6901, 2000.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Shi, H., Lee, B., Wu, S.-J., Zhu, J.-K.: Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. — Nature Biotechnol. 21: 81–85, 2003.CrossRefGoogle Scholar
  109. Shi, H., Quintero, F.J., Pardo, J.M., Zhu, J.-K.: The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. — Plant Cell 14: 465–477, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shi, H., Zhu, J.-K.: Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. — Plant mol. Biol. 50: 543–550, 2002.PubMedCrossRefGoogle Scholar
  111. Silva, P., Gerós, H.: Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. — Plant Signal. Behav. 4: 718–726, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Song, C.-P., Guo, Y., Qiu, Q., Lambert, G., Galbraith, D.W., Jagendorf, A., Zhu, J.-K.: A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. — Proc. nat. Acad. Sci. USA 101: 10211–10216, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Stephan, A.B., Kunz, H.-H., Yang, E., Schroeder, J.I.: Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. — Proc. nat. Acad. Sci. USA 113: E5242–E5249, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sun, Y., Kong, X., Li, C., Liu, Y., Ding, Z.: Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. — PLoS ONE 10: e0124032, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sun, Y., Wang, D., Bai, Y., Wang, N., Wang, Y.: Studies on the overexpression of the soybean GmNHX1 in Lotus corniculatus: The reduced Na+ level is the basis of the increased salt tolerance. — Chinese Sci. Bull. 51: 1306–1315, 2006.CrossRefGoogle Scholar
  116. Sze, H., Padmanaban, S., Cellier, F., Honys, D., Cheng, N.-H., Bock, K.W., Conéjéro, G., Li, X., Twell, D., Ward, J.M., Hirschi, K.D.: Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. — Plant Physiol. 136: 2532–2547, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Teakle, N.L., Tyerman, S.D.: Mechanisms of Cl- transport contributing to salt tolerance. — Plant Cell Environ. 33: 566–589, 2010.PubMedCrossRefGoogle Scholar
  118. Ullah, A., Dutta, D., Fliegel, L.: Expression and characterization of the SOS1 Arabidopsis salt tolerance protein. — Mol. Cell. Biochem. 415: 133–143, 2016.PubMedCrossRefGoogle Scholar
  119. Wang, L., Zhang, J., Wang, D., Zhang, J., Cui, Y., Liu, Y., Yang, H., Binyu, N.: Assessment of salt tolerance in transgenic potato carrying gene. — Crop Sci. 53: 2643, 2013.CrossRefGoogle Scholar
  120. Wang, M., Gu, D., Liu, T., Wang, Z., Guo, X., Hou, W., Bai, Y., Chen, X., Wang, G.: Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. — Plant mol. Biol. 65: 733–746, 2007.PubMedCrossRefGoogle Scholar
  121. Ward, J.M., Hirschi, K.D., Sze, H.: Plants pass the salt. — Trends Plant Sci. 8: 200–201, 2003.PubMedCrossRefGoogle Scholar
  122. Ward, J.M., Mäser, P., Schroeder, J.I.: Plant ion channels: gene families, physiology, and functional genomics analyses. — annu. Rev. Physiol. 71: 59–82, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wu, S.J., Ding, L., Zhu, J.K.: SOS1, a genetic locus essential for salt tolerance and potassium acquisition. — Plant Cell 8: 617–627, 1996.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wu, X.X., Li, J., Wu, X.D., Liu, Q., Wang, Z.K., Liu, S.S., Li, S.N., Ma, Y.L., Sun, J., Zhao, L., Li, H.Y., Li, D.M., Li, W.B., Su, A.Y.: Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance. — Genet. mol. Res. 15: gmr.15027483, 2016.Google Scholar
  125. Xu, Y., Zhou, Y., Hong, S., Xia, Z., Cui, D., Guo, J., Xu, H., Jiang, X.: Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K+/H+ exchanger. — PLoS ONE 8: e78098, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yamaguchi, T., Aharon, G.S., Sottosanto, J.B., Blumwald, E.: Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pHdependent manner. — Proc. nat. Acad. Sci. USA 102: 16107–16112, 2005.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Yamaguchi, T., Apse, M.P., Shi, H., Blumwald, E.: Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. — Proc. nat. Acad. Sci. USA 100: 12510–12515, 2003.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yamaguchi, T., Hamamoto, S., Uozumi, N.: Sodium transport system in plant cells. — Front. Plant Sci. 4: 410, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yang, Q., Chen, Z.-Z., Zhou, X.-F., Yin, H.-B., Li, X., Xin, X.-F., Hong, X.-H., Zhu, J.-K., Gong, Z.: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. — Mol. Plants 2: 22–31, 2009.CrossRefGoogle Scholar
  130. Ye, C.-Y., Yang, X., Xia, X., Yin, W.: Comparative analysis of cation/proton antiporter superfamily in plants. — Gene 521: 245–251, 2013.PubMedCrossRefGoogle Scholar
  131. Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M., Pardo, J.M.: Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. — Plant J. 30: 529–539, 2002.PubMedCrossRefGoogle Scholar
  132. Zeng, Y., Li, Q., Wang, H., Zhang, J., Du, J., Feng, H., Blumwald, E., Yu, L., Xu, G.: Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. — Plant Biotechnol. J. 2017.Google Scholar
  133. Zhang, W.-D., Wang, P., Bao, Z., Ma, Q., Duan, L.-J., Bao, A.-K., Zhang, J.-L., Wang, S.-M.: SOS1, HKT1;5, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. — Front. Plant Sci. 8: 576, 2017.PubMedPubMedCentralGoogle Scholar
  134. Zhang, Y.-M., Zhang, H.-M., Liu, Z.-H., Li, H.-C., Guo, X.-L., Li, G.-L.: The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. — Plant mol. Biol. 87: 317–327, 2015.PubMedCrossRefGoogle Scholar
  135. Zhao, J., Cheng, N.-H., Motes, C.M., Blancaflor, E.B., Moore, M., Gonzales, N., Padmanaban, S., Sze, H., Ward, J.M., Hirschi, K.D.: AtCHX13 is a plasma membrane K+ transporter. — Plant Physiol. 148: 796–807, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zhao, J., Li, P., Motes, C.M., Park, S., Hirschi, K.D.: CHX14 is a plasma membrane K-efflux transporter that regulates K+ redistribution in Arabidopsis thaliana. — Plant Cell Environ. 38: 2223–2238, 2015.PubMedCrossRefGoogle Scholar
  137. Zheng, S., Pan, T., Fan, L., Qiu, Q.-S.: A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis. — PLoS ONE 8: e81463, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhu, J.K.: Plant salt tolerance. — Trends Plant Sci. 6: 66–71, 2001.PubMedCrossRefGoogle Scholar
  139. Zörb, C., Noll, A., Karl, S., Leib, K., Yan, F., Schubert, S.: Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. — J. Plant Physiol. 162: 55–66, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • Q. Jia
    • 1
    • 2
  • C. Zheng
    • 1
  • S. Sun
    • 1
  • H. Amjad
    • 2
  • K. Liang
    • 1
  • W. Lin
    • 1
    • 2
  1. 1.Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouP.R. China
  2. 2.Key Laboratory of Crop Ecology and Molecular PhysiologyFujian Province UniversityFuzhouP.R. China

Personalised recommendations