Skip to main content
Log in

Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply

  • Review
  • Published:
Biologia Plantarum

Abstract

This review reports the physiological and metabolic changes in plants during development under elevated atmospheric carbon dioxide concentration and/or limited-nitrogen supply in order to establish their effects on leaf senescence induction. Elevated CO2 concentration and nitrogen supply modify gene expression, protein content and composition, various aspects of photosynthesis, sugar metabolism, nitrogen metabolism, and redox state in plants. Elevated CO2 usually causes sugar accumulation and decreased nitrogen content in plant leaves, leading to imbalanced C/N ratio in mature leaves, which is one of the main factors behind premature senescence in leaves. Elevated CO2 and low nitrogen decrease activities of some antioxidant enzymes and thus increase H2O2 production. These changes lead to oxidative stress that results in the degradation of photosynthetic pigments and eventually induce senescence. However, this accelerated leaf senescence under conditions of elevated CO2 and limited nitrogen can mobilize nutrients to growing organs and thus ensure their functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

Asn:

asparagine

Asp:

aspartic acid

GDH:

glutamate dehydrogenase

Glu:

glutamic acid

Gln:

glutamine

GS1:

cytololic glutamine synthetase

GS2:

chloroplastic glutamine synthetase

IPCC:

intergovernmental panel on climate change

LHCP:

light-harvesting chlorophyll-binding proteins

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

ROS:

reactive oxygen species

SAG:

senescence associated gene

SLM:

specific leaf mass

SOD:

superoxide dismutase

References

  • Agüera, E., Cabello, P., De la Haba, P.: Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. - Physiol. Plant. 138: 256–267, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Albacete, A.A., Martínez-Andújar, C., Pérez-Alfocea, F.: Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. - Biotechnol. Adv. 32: 12–30, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Aoyama, S., Reyes T.H, Guglielminettil, L., Lu, Y., Morita, Y., Sato, T., Yamaguchi, T.: Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. - Plant Cell Physiol. 55: 293–305, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Aranjuelo, I., Cabrera-Bosquet, L., Morcuende, R., Avice, J.C., Nogués, S., Araus, J.L., Martínez-Carrasco, R., Pérez, P.: Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? -J. exp. Bot. 62: 3957–3969, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aranjuelo, I., Sanz-Sáez, A., Jauregui, I., Irigoyen, J.J., Araus, J.L., Sánchez-Díaz, M., Erice, G.: Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. - J. exp. Bot. 64: 1879–1892, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Backhausen, J.E., Emmerlich, A., Holtgrefe, S., Horton, P., Nast, G., Rogers, J.J., Müller-Röber, B., Scheibe, R.: Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts. - Planta 207: 105–114, 1998.

    Article  CAS  Google Scholar 

  • Bloom, A.J.: Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. - Photosynth. Res. 123: 117–128, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Bloom A.J., Burger, M., Rubio Asensio, J.S., Cousins, A.B.: Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. - Science 328: 899–903, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K., Leaver, C.J.: Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. - Plant J. 42: 567–585, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Buchner, P., Tausz, M., Ford, R., Leo, A., Fitzgerald, G.J., Hawkesford, M.J., Tausz-Posch, S.: Expression patterns of C- and N-metabolism related genes in wheat are changed during senescence under elevated CO2 in dry-land agriculture. - Plant Sci. 236: 239–249, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Cabello, P., Agüera, E., De La Haba, P.: Metabolic changes during natural ageing in sunflower (Helianthus annuus) leaves: expression and activity of glutamine synthetase isoforms are regulated differently during senescence. - Physiol. Plant. 128: 175–185, 2006.

    Article  CAS  Google Scholar 

  • Canales, F.J., De la Haba, P., Barrientos E., Agüera, E.: Effect of CO2 enrichment and increased nitrogen supply on the induction of sunflower (Helianthus annuus L.) primary leaf senescence. - Can. J. Plant Sci. 96: 1002–1013, 2016.

    CAS  Google Scholar 

  • Cantamutto, M., Poverene, M.: Genetically modified sunflower release: opportunities and risks. - Field Crops Res. 101: 133–144, 2007.

    Article  Google Scholar 

  • Carlisle, E., Myers, S., Raboy, V. Bloom, A.: The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. - Front. Plant Sci. 3: 195, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrión, C.A., Costa, M.L., Martínez, D.E., Mohr, C., Humbeck, K., Guiamet, J.J.: In vivo inhibition of cysteine proteases provides evidence for the involvement of ‘senescence-associated vacuoles’ in chloroplast protein degradation during dark-induced senescence of tobacco leaves. - J. exp. Bot. 64: 4967–4980, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Wang, S., Xiong, B., Cao, B., Deng X.: Carbon/ nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. - PloS ONE 10: 8, 2015.

    Google Scholar 

  • Christiansen, M.V., Matthewman, C., Podzimska-Sroka, D., O’Shea, C., Lindemose, S., Møllegaard, N.E., Holme, I.B., Hebelstrup, K., Skriver, K., Gregersen, P.L.: Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. - J. exp. Bot. 67: 5259–5273, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De la Mata, L., Cabello, P., De la Haba, P., Agüera, E.: Growth under elevated atmospheric CO2 concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants. - J. Plant Physiol. 109: 1392–1400, 2012.

    Article  CAS  Google Scholar 

  • De la Mata, L., De la Haba, P., Alamillo, J. M., Pineda, M., Agüera, E.: Elevated CO2 concentrations alter nitrogen metabolism and accelerate senescence in sunflower (Helianthus annuus L.) plants. - Plant Soil Environ. 7: 303–308, 2013.

    Article  Google Scholar 

  • Del Rio, L.: ROS and RNS in plant physiology: an overview. - J. exp. Bot. 66: 2827–2837, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Diaz, C., Purdy, S., Christ, A., Morot-Gaudry, J.F., Wingler, A., Masclaux-Daubresse, C.: Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. - Plant Physiol. 138: 898–908, 2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Easlon, H.M., Carlisle, E., Mckay J.K., Bloom, A.J.: Does Low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis. - Plant Physiol. 167: 793–799, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferris, R., Sabatti, M., Miglietta, F., Mills, R., Taylor, G.: Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. - Plant Cell Environ. 24: 305–315, 2001.

    Article  CAS  Google Scholar 

  • Geissler, N., Hussin, S., Koyro, H.W.: Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. - J. exp. Bot. 60: 137–151, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, K.M., Rogers, A., Ainsworth, E.A.: Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). - J. exp. Bot. 62: 2667–2678, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Girondé, A., Etienne, P., Trouverie, J., Bouchereau, A., Le Cahérec, F., Leport, L., Orsel, M., Niogret, M.F., Nesi, N., Carole, D., Soulay, F., Masclaux-Daubresse, C., Avice, J.C.: The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. - BMC Plant Biol. 15: 59, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruissem, W., Lee, C., Oliver, M., Pogson, B.: The global plant council: increasing the impact of plant research to meet global challenges. - J. Plant Biol. 55: 343–345, 2012.

    Article  Google Scholar 

  • Guo, Y., Cai, Z., Gan, S.: Transcriptome of Arabidopsis leaf senescence. - Plant Cell Environ. 27: 521–549, 2004.

    Article  CAS  Google Scholar 

  • Gutiérrez, D., Morcuende, R., Del Pozo, A., Martínez-Carrasco, R., Pérez, P.: Involvement of nitrogen and cytokinins in photosynthetic acclimation to elevated CO2 of spring wheat. - J. Plant Physiol. 170: 1337–1343, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Havé, M., Leitao, L., Bagard, M., Castell, J.F., Repellin, A.: Plant protein carbonylation during natural leaf senescence in winter wheat as probed by fluorescein-5-thiosemicarbazide. - Plant Biol. 17: 973–979, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Havé, M., Marmagne, A., Chardon, F., Masclaux-Daubresse, C.: Nitrogen remobilization during leaf senescence: lessons from Arabidopsis crops. - J. exp. Bot. 68: 2513–2529, 2017.

    PubMed  Google Scholar 

  • Haworth, M., Killi, D., Materassi, A., Raschi A., Centritto, M.: Impaired stomatal control is associated with reduced photosynthetic physiology in crop species grown at elevated [CO2]. - Front. Plant Sci. 7: 1568, 2016.

    PubMed  PubMed Central  Google Scholar 

  • Hendry, G.A.F., Houghton, J.D. Brown, S.B.: The degradation of chlorophyll–a biological enigma. - New Phytol. 107: 255–302, 1987.

    Article  CAS  Google Scholar 

  • Himelblau, E., Amasino, R.M.: Nutrients mobilized from leaves of Arabidopsis thaliana during senescence. - J. Plant Physiol. 158: 1317–1323, 2001.

    Article  CAS  Google Scholar 

  • Igamberdiev, A.U., Bykova, N.V., Lea, P.J., Gardeström, P.: The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. - Physiol. Plant. 111: 427–438, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kontunen-Soppela, S., Parviainen, J., Ruhanen, H., Brosche, M., Keinänen, M., Thakur, R.C., Kolehmainen, M., Kangasjärvi, J., Oksanen, E., Karnosky, D.F.: Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. - Environ. Pollut. 158: 959–968, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kurepa, J., Smalle, J.A.: Structure function and regulation of plant proteasomes. - Biochimie 90: 324–335, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R., Chen, S.G.: Programmed cell death during rice leaf senescence is nonapoptotic. - New Phytol. 155: 25–32, 2002.

    Article  CAS  Google Scholar 

  • Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., Ou, S., Wu, H., Sun, X., Chu, J., Chu, C.: OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. - Proc. nat. Acad. Sci. USA 111: 10013–10018, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim, P.O., Kim, H.J., Gil Nam, H.: Leaf senescence. - Annu. Rev. Plant Biol. 58: 115–136, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Wang, L., Liu, H., Zhao, R., Liu, B., Fu, Q., Zhang, Y.: The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum NC89). - Biol. Res. 49: 30–45, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lotfiomran, N., Köhl, M., Fromm. J.: Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of european beech (Fagus sylvatica L.). - Plants 5: 38, 2016.

    Article  PubMed Central  Google Scholar 

  • Mariscal, V., Moulin, P., Orsel, M., Miller, A.J., Fernández, E., Galván, A.: Differential regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. - Protist. 157: 421–433, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Martínez, D.E., Costa, M.L., Guiamet, J.J.: Senescenceassociated degradation of chloroplast proteins inside and outside the organelle. - Plant Biol. 10: 15–22, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants. 3rd Edition. - Academic Press, London 2012.

    Google Scholar 

  • Masclaux C, Valadier M.H, Brugière N, Morot-Gaudry J.F, Hirel B.: Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. - Planta 211: 510–518, 2000.

    Article  PubMed  CAS  Google Scholar 

  • McNally, S., Hirel, B.: Glutamine synthetase isoforms in higher plants. - Physiol. vég. 21: 761–774, 1983.

    CAS  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405–410, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, K., Watanabe, C.K., Terashima, I.: Effects of elevated atmospheric CO2 on primary metabolite levels in Arabidopsis thaliana Col-0 leaves: an examination of metabolome data. - Plant Cell Physiol. 56: 2069–2078, 2015.

    PubMed  CAS  Google Scholar 

  • Ougham, H., Hörtensteiner, S., Armstead, I., Donnison, I., King, I., Thomas, H., Mur. L.: The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence. - Plant Biol. 10: 4–14, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Palenchar, PM., Kouranov, A., Lejay, L.V., Coruzzi, G.M.: Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. - Genom. Biol. 5: R91, 2004.

    Article  Google Scholar 

  • Pérez, P., Morcuende, R., Martín del Molino, I.M., Martínez- Carrasco, R.: Diurnal changes of Rubisco in response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradient tunnels. - Environ. exp. Bot. 53: 13–27, 2005.

    Article  CAS  Google Scholar 

  • Procházková, D., Wilhelmová, N.: Leaf senescence and activities of the antioxidant enzymes. - Biol. Plant. 51: 401–406, 2007.

    Article  Google Scholar 

  • Quesada, A, Gómez-García, I, Fernández, E.: Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. - Trends Plant Sci. 5: 463–464, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Q.S., Huber, J.L., Booker, F.L., Jain, V., Leakey, A.D.B., Fiscus, E.L., Yau, P.M., Ort, D.R., Huber, S.C.: Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated [CO2]. - Photosynth. Res. 97: 155–166, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Quirino, B.F., Noh, Y.S., Himelblau, E., Amasino, R.M.: Molecular aspects of leaf senescence. - Trends Plant Sci. 5: 278–282, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Riikonen, J., Percy, K.E., Kivimäenpää, M., Kubiske, M.E., Nelson, N.D., Vapaavuori, E., Karnosky, D.F. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. - Environ. Pollut. 158: 1029–1035, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, W.D., Carson, I., Ying, S., Ellis, K., Plaxton, W.C.: Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. - New Phytol. 196: 1024–1029, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser, S., Rot, I., Sollner, E., Meyer, A.J., Smith, Y., Leviatan, N., Fluhr, R., Friedman, H.: Organelles contribute differentially to reactive oxygen species-related events during extended darkness. - Plant Physiol. 156: 185–201, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schippers, J.H.M., Schmidt, R., Wagstaff, C., Jing, H.C.: Living to die and dying to live: the survival strategy behind leaf senescence. - Plant Physiol. 169: 914–930, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. - J. Bot. 1: 26, 2012.

    Google Scholar 

  • Srivalli, B., Khanna-Chopra, R.: The developing reproductive ‘sink’ induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat. - Biochem. biophys. Res. Commun. 325: 198–202, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Srivalli, B., Khanna-Chopra, R.: Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. - Plant Physiol. Biochem. 47: 663–670, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M., Krapp, A.: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. - Plant Cell and Environ. 22: 583–621, 1999.

    Article  CAS  Google Scholar 

  • Taylor, K.E., MacCracken, M.C.: Projected effects of increasing concentrations of carbon dioxide and trace gases on climate.–In: Kimball, B.A, (ed): Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture. Pp. 1–17. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 1990.

    Google Scholar 

  • Thomas, H.: Senescence, ageing and death of the whole plant. - New Phytol. 197: 696–711, 2013.

    Article  PubMed  Google Scholar 

  • Thomas, H., Ougham, H.: The stay-green trait. - J. exp. Bot 65: 3889–3900, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J.: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. - Science 314: 1298–1301, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uzelac, B., Janošević, D., Simonović, A., Motyka, V., Dobrev, P.I., Budimir, S.: Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. - Protoplasma. 253: 259–275, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Vanacker, H., Sandalio, L.M., Jiménez, A., Palma, J.M., Corpas, F.J., Meseguer, V., Gomez, M., Sevilla, F., Leterrier, M., Foyer, C.H., Del Rio, L.A.: Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. - J. exp. Bot. 57: 1735–1745, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Vicente, R., Perez, P., Martínez-Carrasco, R., Feil, R., Lunn, J.E. Watanabe, M., Arrivault, S., Stitt, M., Hoefgen, R., Morcuende, R.: Metabolic and transcriptional analysis of durum wheat responses to elevated CO2 at low and high nitrate supply. - Plant Cell Physiol. 57: 133–2146, 2016.

    Article  CAS  Google Scholar 

  • Wei, S., Wang, X., Shi, D., Li, Y., Zhang, J., Liu, P., Zhao, B., Dong, S.: The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. - Plant Physiol. Biochem. 105: 118–128, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Wiedemuth, K., Müller, J., Kahlau, A., Amme, S., Mock, H., Grzam, A., Hell, R., Egle, K., Beschow, H., Humbeck, K.: Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. - J. Plant Physiol. 162: 1226–1236, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wingler, A., Marès, M., Pourtau, N.: Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. - New Phytol. 161: 781–789, 2004.

    Article  Google Scholar 

  • Wingler, A., Maxclaux-Daubresse, C., Fischer A.M.: Sugars, senescence, and ageing in plants and heterotrophic organisms. - J. exp. Bot. 60: 1063–1066, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Wingler, A., Purdy, S., MacLean, J.A., Pourtau N.: The role of sugars in integrating environmental signals during the regulation of leaf senescence. - J. exp. Bot. 57: 391–399, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wingler, A., Roitsch, T.: Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress response. - Plant Biol. 10: 50–62, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Ohlrogge, J.B.: Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis b-oxidation mutants. - Plant Physiol. 150: 1981–1989, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yousuf, P.Y., Ganie, A.H., Khan, I., Qureshi, M.I., Ibrahim, M., Sarwt, M., Iqbal, M., Ahmad, A.: Nitrogen-efficient and nitrogen-inefficient Indian mustard showed differential expression pattern of proteins in response to elevated CO2 and low nitrogen. - Front. Plant Sci. 7: 1–22, 2016.

    Article  Google Scholar 

  • Zhao, D., Derkx, A.P., Liu, D.C., Buchner, P., Hawkesford, M.J.: Over- expression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. - Plant Biol. 17: 904–913, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zulfugarov, I.S., Tovuu, A., Kim, J., Lee, C.: Detection of reactive oxygen species in higher plants. - J. Plant Biol. 54: 351–357, 2011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Agüera.

Additional information

Acknowledgments: The authors are grateful to the University of Córdoba Programa Propio and Junta de Andalucía (PAI Group BIO-0159), Spain, for their financial support for this work. All appropriate permissions have been obtained from the copyright holders of any work that has been reproduced in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agüera, E., De la Haba, P. Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply. Biol Plant 62, 401–408 (2018). https://doi.org/10.1007/s10535-018-0798-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-018-0798-z

Additional key words

Navigation