Skip to main content
Log in

Osmotic stress affects growth, content of chlorophyll, abscisic acid, Na+, and K+, and expression of novel NAC genes in contrasting rice cultivars

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that alters plant growth, development, and productivity around the globe. Phytohormones, nutrients, and transcription factors may induce adaptive responses to osmotic stress in plants. We evaluated the effect of osmotic stress induced by 18.5 % polyethylene glycol (PEG) or 100 mM NaCl on growth, content of abscisic acid (ABA), chlorophyll (Chl), sodium, and potassium, and the expression of multifunctional NAC transcription factors in rice cultivars (the salt-tolerant Cotaxtla and salt-sensitive Tres Ríos). The PEG and NaCl decreased shoot height and increased ABA content in both cultivars, and reduced root length in cv. Tres Ríos. The PEG increased Chl content in cv. Cotaxtla leaves. NaCl reduced shoot K+ content in cv. Tres Ríos and increased shoot and root Na+ content in both cultivars, thus resulting in a decreased K+/Na+ ratio. Of the 57 NAC genes evaluated, two of them were repressed (Os10g42130 and Os07g04560) and two other induced (Os02g34970 and OsNAC10) in cv. Cotaxtla in response to PEG, whereas three of them were repressed (Os10g42130, Os07g04560 and Os08g10080), and six induced (Os02g56600, Os02g34970, Os11g08210, Os05g34830, OsNAC6, and OsNAC10) in response to NaCl. In the cv. Tres Ríos, we found two genes repressed (Os10g42130 and Os07g04560), and five induced (Os08g33910, Os03g60080, Os06g51070, OsNAC6, and OsNAC10) in response to PEG, while only two genes were repressed (Os10g42130 and Os07g04560) but 13 induced (Os03g21060, Os08g39110, Os03g60080, Os01g15640, Os06g51070, Os09g33490, Os04g40130, Os12g29330, Os02g36880, Os11g08210, Os05g34830, OsNAC6, and OsNAC10) by NaCl. Osmotic stress affected more severely cv. Tres Ríos than cv. Cotaxtla plants. These different responses might be regulated by ABA and NAC transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

NAC:

NAM, ATAF, and CUC

PEG:

polyethylene glycol

RT-qPCR:

reverse transcription quantitative PCR

TF:

transcription factor

References

  • Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., Tasaka, M.: Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. - Plant Cell 9: 841–857, 1997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agarwal, P.K., Jha, B.: Transcription factors in plants and ABA dependent and independent abiotic stress signalling. - Biol. Plant. 54: 201–212, 2010.

    Article  CAS  Google Scholar 

  • Ahmad, I., Mian, A., Maathuis, F.J.: Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. - J. exp. Bot. 67: 2689–2698, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts - polyphenoloxidase in Beta vulgaris. - Plant Physiol. 24: 1–15, 1949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balazadeh, S., Riaño-Pachón, D.M., Mueller-Roeber, B.: Transcription factors regulating leaf senescence in Arabidopsis thaliana. - Plant Biol. 1 (Suppl.): 63–75, 2008.

    Article  CAS  Google Scholar 

  • Bartlett, M.K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K., Sack, L.: Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point. - Methods Ecol. Evol. 3: 880–888, 2012.

    Article  Google Scholar 

  • Blumwald, E.: Sodium transport and salt tolerance in plants. - Curr. Opin. Cell Biol. 12: 431–434, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Caldana, C., Scheible, W.R., Mueller-Roeber, B., Ruzicic, S.: A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. - Plant Methods 3: 7, 2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillo, E.G., Tuong, T.P., Ismail, A.M., Inubushi, K.: Response to salinity in rice: comparative effects of osmotic and ionic stresses. - Plant Prod. Sci. 10: 159–170, 2007.

    Article  CAS  Google Scholar 

  • Chakraborty, K., Bhaduri, D., Meena, H.N., Kalariya, K.: External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. - Plant Physiol. Biochem. 103: 143–53, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Cheng, J., Chen, L., Zhang, G., Huang, H., Zhang, Y., Xu, L.: Auxin-independent NAC pathway acts in response to explant-specific wounding and promotes root tip emergence during de novo root organogenesis in Arabidopsis. - Plant Physiol. 170: 2136–2145, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christiansen, M.W., Holm, P.B., Gregersen, P.L.: Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots. - BMC Res. Notes 4: 302, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conde, A., Chaves, M.M., Gerós, H.: Membrane transport, sensing and signaling in plant adaptation to environmental stress. - Plant Cell Physiol. 52: 1583–1602, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Criado, M.V., Roberts, I.N., Echeverria, M., Barneix, A.J.: Plant growth regulators and induction of leaf senescence in nitrogen-deprived wheat plants. - J. Plant Growth Regul. 26: 301–307, 2007.

    Article  CAS  Google Scholar 

  • Du, H., Wang, N., Cui F., Li, X., Xiao, J., Xiong, L.: Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. - Plant Physiol. 154: 1304–1318, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., Xiong, L.: A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. - J. exp. Bot. 66: 6803–6817, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Morales, S., Trejo-Téllez, L.I., Gómez-Merino, F.C., Caldana, C., Espinosa-Victoria, D., Herrera-Cabrera, E.: Growth, photosynthetic activity and potassium and sodium concentration in rice plants under salt stress. - Acta Sci. 34: 317–324, 2012.

    Google Scholar 

  • García-Morales, S., Gómez-Merino, F.C., Trejo-Téllez, L.I.: NAC transcription factor expression, amino acid concentration and growth of elite rice cultivars upon salt stress. - Acta Physiol. Plant. 36: 1927–1936, 2014.

    Article  CAS  Google Scholar 

  • Ghosh, T., Rai, M., Tyagi, W., Challam, C.: Seedling stage low temperature response in tolerant and susceptible rice genotypes suggests role of relative water content and members of OsSNAC gene family. - Plant Signal Behav. 11: e1138192, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greve, K., La Cour, T., Jensen, M.K., Poulsen, F.M., Skriver, K.: Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. - Biochem. J. 371: 97–108, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanin, M., Ebel, C., Ngom, M., Laplaze, L., Masmoudi, K.: New insights on plant salt tolerance mechanisms and their potential use for breeding. - Front. Plant Sci. 7: 1787, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., Chen, S.Y.: AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. - Plant J. 44: 903–916, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Y., Zhang, H., Huang, L., Li, D., Song, F.: Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. - Front. Plant Sci. 7: 4, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., Xiong, L.: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. - Proc. nat. Acad. Sci. USA 103: 12987–12992, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hu, H.H., You, J.

  • Fang, Y.J., Zhu, X., Qi, Z.Y., Xiong, L.Z.: Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. - Plant mol. Biol. 67: 169–181, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Q., Wang, Y., L.I., B., Chang, J., Chen, M., Li, K., Yang, G., He, G.: TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. - BMC Plant Biol. 15: 268, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Choi, Y.D., Kim, M., Reuzeau, C., Kim, J.K.: Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. - Plant Physiol. 153: 185–197, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong, J.S., Kim, Y.S., Redills, M.C., Jang, G., Jung, H., Bang, S.W., Choi, Y.D., Ha, S.H. Reuzeau, C., Kim, J.K.: OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. - Plant Biotechnol. J. 11: 101–114, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Ji, H., Liu, L., Li, K., Xie, Q., Wang, Z., Zhao, X., Li, X.: PEGmediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. - J. exp. Bot. 65: 4863–4872, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji, K.X., Wang, Y.Y., Sun, W.N., Lou, Q.J., Mei, H.W., Shen, S.H., Chen, H.: Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. - J. Plant Physiol. 169: 336–344, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chu, N.H., Park, C.M.: A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. - Plant Cell 18: 3132–3144, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kou, X., Liu, C., Han, L., Wang, S., Xue, Z.: NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening. - Mol. Genet. Genomics 291: 1205–1217, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, K.A., Kumar, M.S, Sudha, M., Vijayalakshmi, D., Vellaikkumar, S., Senthil, N., Raveendran, M.: Identification of genes controlling ABA accumulation in rice during drought stress and seed maturation. - Int. J. adv. biotechnol. Res. 4: 481–487, 2013.

    Google Scholar 

  • Le, D.T., Nishiyama, R., Watanabe, Y., Mochida, K., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S.P.: Genome-wide survey and expression analysis of the plantspecific NAC transcription factor family in soybean during development and dehydration stress. - DNA Res. 18: 263–276, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, R., Zhao, W., Meng, X., Wang, M., Peng, Y.: Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. - Plant Sci. 172: 120–130, 2007.

    Article  CAS  Google Scholar 

  • Liu, G., Li, X., Jin, S., Liu, X., Zhu, L., Nie, Y., Zhang, X.: Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. - PLoS One 9: e86895, 2014.

    Article  CAS  Google Scholar 

  • Marcinska, I., Czyczylo-Mysza, I., Skrzypek, E., Grzesiak, M.T., Janowiak, F., Filek, M., Dziurka, M., Dziurka, K., Waligó rski, P., Juzon, K., Cyganek K., Grzesiak, S.: Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. - Int. J. mol. Sci. 14: 13171–13193, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mekawy, A.M., Assaha, D.V., Yahagi, H., Tada, Y., Ueda, A., Saneoka, H.: Growth, physiological adaptation, and gene expression analysis of two Egyptian rice cultivars under salt stress. - Plant Physiol. Biochem. 87: 17–25, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Moumeni, A., Satoh, K., Venuprasad, R., Serraj, R., Kumar, A., Leung, H., Kikuchi, S.: Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit. - BMC Genomics 16: 1110, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, K., Tran, L.S., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. - Plant J. 51: 617–630, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nuruzzaman, M., Manimekalai, R., Sharoni, A.M.

  • Satoh, K., Kondoh, H., Ooka, H., Kikuchi, S.: Genome-wide analysis of NAC transcription factor family in rice. - Gene 465: 30–44, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Nuruzzaman, M., Sharoni, A.M., Satoh, K., Moumeni, A., Venuprasad, R., Serraj, R., Kumar, A., Leung, H., Attia, K., Kikuchi, S.: Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using nearisogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64. - Mol. Genet. Genomics 287: 389–410, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nuruzzaman, M., Sharoni, A.M., Satoh, K., Karim, M.R., Harikrishna, J.A., Shimizu, T., Sasaya, T., Omura, T., Haque, M.A., Hasan, S.M., Ahmad, A., Kikuchi, S.: NAC transcription factor family genes are differentially expressed in rice during infections with Rice dwarf virus, Rice blackstreaked dwarf virus, Rice grassy stunt virus, Rice ragged stunt virus, and Rice transitory yellowing virus. - Front. Plant Sci. 6: 676, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oda-Yamamizo, C., Mitsuda, N., Sakamoto, S., Ogawa, D., Ohme-Takagi, M., Ohmiya, A.: The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. - Sci. Rep. 6: 23609, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yoshiba, Y., Hirano, H.Y., Tsutsumi, N.: OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. - Genes Genet. Syst. 80: 135–139, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Olivella, C., Vendrell, M., Save R.: [Determinacion de ácido abscisico, ácido indolacetico, zeatina y ribosido de zeatina en hojas desarrolladas de Gerbera jamesonii cv Bolus y su variacion con la edad]. - Invest. Agr. Prod. Prot. Veg. 16: 333–342, 2001. [In Spanish]

    Google Scholar 

  • Pandey, V., Shukla, A.: Acclimation and tolerance strategies of rice under drought stress. - Rice Sci. 22: 147–161, 2015.

    Article  Google Scholar 

  • Rattanakon, S., Ghan, R., Gambetta, G.A., Deluc, L.G., Schlauch, K.A., Cramer, G. R.: Abscisic acid transcriptomic signaling varies with grapevine organ. - BMC Plant Biol. 16: 72, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues, M.L., Pacheco, C.M., Chaves, M.M.: Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. - J. exp. Bot. 46: 947–956, 1995.

    Article  CAS  Google Scholar 

  • Sablowski, R.W., Meyerowitz, E.M.: A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. - Cell 92: 93–103, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sakuraba, Y., Han, S.H., Lee, S.H., Hörtensteiner, S., Paek, N.C.: Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription. - Plant Cell Rep. 35: 155–166, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative CT method. - Nat. Protocols 3: 1101–1108, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Shabala, S., Wu, H., Bose, J.: Salt stress sensing and early signaling events in plant roots: current knowledge and hypothesis. - Plant Sci. 241: 109–119, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Shan, W., Chen, J.-Y., Kuang, J.-F., Lu, W.-J.: Banana fruit NAC transcription factor MaNAC5 cooperates with MaWRKYs to enhance the expression of pathogenesisrelated genes against Colletotrichum musae. - Mol. Plant Pathol. 17: 330–338, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Shen, H., Chen, F., Dixon, A.: A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. - Bioenerg. Res. 2: 217–232, 2009.

    Article  Google Scholar 

  • Shiriga, K., Sharma, R., Kumar, K., Yadav, S.K., Hossain, F., Thirunavukkarasu, N.: Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. - Meta Gene 2: 407–417, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shobbar, M.-S., Azhari, O., Shobbar, Z.-S., Niknam, V., Askari, H., Pessarakli, M., Ebrahimzadeh, H.: Comparative analysis of some physiological responses of rice seedlings to cold, salt, and drought stresses. - J. Plant Nutr. 35: 1037–1052, 2012.

    Article  CAS  Google Scholar 

  • Souleymane, O., Nartey, E., Manneh, B., Danquah, E., Ofori, K.: Phenotypic variability of 20 rice genotypes under salt stress. - Int. J. Plant Breed. Genet. 10: 45–51, 2016.

    Article  Google Scholar 

  • Sperotto, R.A., Ricachenevsky, F.K., Duarte, G.L., Boff, T., Lopes, K.L., Sperb, E.R., Grusak, M.A., Fett, J.P: Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. - Planta 230: 985–1002, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Wakeel, A.: Potassium-sodium interactions in soil and plant under saline-sodic conditions. - J. Plant Nutr. Soil Sci. 176: 344–354, 2013.

    Article  CAS  Google Scholar 

  • Wei, S., Gao, L., Zhang, Y., Zhang, F., Yang, X., Huang, D: Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress. - Plant Cell Rep. 35: 1827–1839. 2016.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Römheld, V., Marschner, H.: Effect of bicarbonate on root growth and accumulation of organic acids in Zninefficient and Zn-efficient rice cultivars (Oryza sativa L.). - Plant Soil 164: 1–7, 1994.

    Article  CAS  Google Scholar 

  • Yu, X., Liu, Y., Wang, S., Tao, Y., Wang, Z., Shu, Y., Peng, H., Mijti, A., Wang, Z., Zhang, H., Ma, H.: CarNAC4, a NACtype chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. - Plant Cell Rep. 35: 613–627, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zhang, L., Xia, C., Zhao, G., Jia, J., Kong, X.: The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. - Front. Plant Sci. 6: 1174, 2016.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, D., Derkx, A.P., Liu, D.C., Buchner, P., Hawkesford, M.J.: Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. - Plant Biol. 17: 904–913, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, F., Ma, J., Li, L., Fan, S., Guo, Y., Song, M., Wei, H., Pang, C., Yu, S.: GhNAC12, a neutral candidate gene, leads to early aging in cotton (Gossypium hirsutum L). - Gene 576: 268–274, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X., Chen, B., Lu, G., Han, B.: Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. - Biochem. biophys. Res. Commun. 379: 985–989, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., Yang, P., Cui, F., Zhang, F., Luo, X., Xie, J.: Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). - PLoS One 11: e0146242, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Gómez-Merino.

Additional information

Acknowledgments: SGM acknowledges Mexico’s National Council of Science and Technology (CONACYT) for the Ph.D. fellowship awarded. The authors also acknowledge Prof. Ramón Marcos Soto and M. Sc. Rubén San Miguel for technical assistance in determining ABA concentration by HPLC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Morales, S., Gómez-Merino, F.C., Trejo-Téllez, L.I. et al. Osmotic stress affects growth, content of chlorophyll, abscisic acid, Na+, and K+, and expression of novel NAC genes in contrasting rice cultivars. Biol Plant 62, 307–317 (2018). https://doi.org/10.1007/s10535-017-0761-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0761-4

Additional key words

Navigation