Biologia Plantarum

, Volume 62, Issue 1, pp 69–79 | Cite as

High irradiance sensitive phenotype of Arabidopsis hit2/xpo1a mutant is caused in part by nuclear confinement of AtHsfA4a

  • H.-Y. Huang
  • K.-Y. Chang
  • S.-J. Wu
Original papers


In Arabidopsis, EXPORTIN1A (HIT2/XPO1A) and EXPORTIN1B (XPO1B) mediate the translocation of nuclear export sequence (NES)-bearing proteins from nucleus to cytoplasm. However, a mutation in HIT2/XPO1A but not in XPO1B induces sensitivity to high irradiance (HI). Arabidopsis thaliana heat stress elements A4a and A5 (AtHsfA4a and AtHsfA5) are involved in plant responses to HI and possess NESs; therefore, their nucleo-cytoplasmic partitioning was analyzed. In wild-type and xpo1b mutant cells, AtHsfA4a normally remained in the cytoplasm but became concentrated in the nucleus following exposure to HI, whereas AtHsfA5 was constitutively distributed in both cytoplasm and nucleus. However, in hit2/xpo1a mutant, AtHsfA4a and AtHsfA5 were always confined to the nucleus, regardless of the irradiance. Although AtHsfA4a can enhance the ability of plants to scavenge H2O2, and AtHsfA5 is a repressor of AtHsfA4a, athsfa5 but not athsfa4a mutant plants exhibited HI sensitivity. Additionally, athsfa4a plants expressing AtHsfA4aΔNES were sensitive to HI, but athsfa5 plants expressing AtHsfA5ΔNES were not. Meanwhile, hit2/athsfa4a double mutant was more tolerant to HI than hit2. These results indicate that both AtHsfA4a and AtHsfA5 were HIT2/XPO1A-specific substrates. Long-term accumulation of AtHsfA4a contributed to the hit2 HI-sensitive phenotype independent of the scavenging ability of H2O2, and the presence of AtHsfA5 could mitigate this adverse effect.

Additional key words

exportin1 (XPO1) heat stress factor A4a nuclear transport receptor 



ascorbate peroxidase


bimolecular fluorescent complementation




green fluorescent protein


heat stress factor


heat stress element


heat shock protein


leptomycin B


methyl viologen


nuclear export sequence


nuclear localization sequence


reactive oxygen species


superoxide dismutase






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2017_753_MOESM1_ESM.pdf (2.4 mb)
Supplementary material, approximately 2499 KB.


  1. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., Ecker, J.R.: Genome-wide insertional mutagenesis of Arabidopsis thaliana. — Science 301: 653–657, 2003.CrossRefPubMedGoogle Scholar
  2. Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.CrossRefPubMedGoogle Scholar
  3. Aro, E.M., Suorsa, M., Rokka, A., Allahverdiyeva, Y., Paakkarinen, V., Saleem, A., Battchikova, N., Rintamäki, E.: Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. — J. exp. Bot. 56: 347–356, 2005.CrossRefPubMedGoogle Scholar
  4. Aro, E.M., Virgin, I., Andersson, B.: Photoinhibition of photosystem II. Inactivation, protein damage and turnover. — Biochim. biophys. Acta 1143: 113–134, 1993.CrossRefPubMedGoogle Scholar
  5. Baniwal, S.K., Chan, K.Y., Scharf, K.D., Nover, L.: Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. — J. biol. Chem. 282: 3605–3613, 2007.CrossRefPubMedGoogle Scholar
  6. Blanvillain, R., Boavida, L.C., McCormick, S., Ow, D.W.: EXPORTIN1 genes are essential for development and function of the gametophytes in Arabidopsis thaliana. — Genetics 180: 1493–1500, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. — Plant J. 16: 735–743, 1998.CrossRefPubMedGoogle Scholar
  8. Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., Mittler, R.: Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. — Plant Cell 17: 268–281, 2005a.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Davletova, S., Schlauch, K., Coutu, J., Mittler, R.: The zincfinger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. — Plant Physiol. 139: 847–856, 2005b.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Haasen, D., Köhler, C., Neuhaus, G., Merkle, T.: Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. — Plant J. 20: 695–705, 1999.CrossRefPubMedGoogle Scholar
  11. Heerklotz, D., Döring, P., Bonzelius, F., Winkelhaus, S., Nover, L.: The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. — Mol. Cell. Biol. 21: 1759–1768, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hung, S.H., Yu, C.W., Lin, C.H.: Hydrogen peroxide functions as a stress signal in plants. — Bot. Bull. Acad. sin. 46: 1–10, 2005.Google Scholar
  13. Kleinboelting, N., Huep, G., Kloetgen, A., Viehoever, P., Weisshaar, B.: GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. — Nucl. Acids Res. 40: D1211–D1215, 2012.CrossRefPubMedGoogle Scholar
  14. Kotak, S., Port, M., Ganguli, A., Bicker, F., Von Koskull-Döring, P.: Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. — Plant J. 39: 98–112, 2004.CrossRefPubMedGoogle Scholar
  15. Merkle, T.: Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. — Curr. Genet. 44: 231–260, 2003.CrossRefPubMedGoogle Scholar
  16. Merkle, T.: Nucleo-cytoplasmic transport of proteins and RNA in plants. — Plant Cell Rep. 30: 153–176, 2011.CrossRefPubMedGoogle Scholar
  17. Miller, G., Shulaev, V., Mittler, R.: Reactive oxygen signaling and abiotic stress. — Physiol. Plant. 133: 481–489, 2008.CrossRefPubMedGoogle Scholar
  18. Miller, G., Mittler, R.: Could heat shock transcription factors function as hydrogen peroxide sensors in plants? — Ann. Bot. 98: 279–288, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Misyura, M., Colasanti, J., Rothstein, S.J.: Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions. — J. exp. Bot. 64: 229–240, 2013.CrossRefPubMedGoogle Scholar
  20. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  21. Nishiyama, Y., Murata, N.: Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. — Appl. Microbiol. Biotechnol. 98: 8777–8796, 2014.CrossRefPubMedGoogle Scholar
  22. Niyogi, K.K.: Photoprotection revisited: genetic and molecular approaches. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 333–359, 1999.CrossRefPubMedGoogle Scholar
  23. Nover, L., Bharti, K., Döring, P., Mishra, S.K., Ganguli, A., Scharf, K.D.: Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? — Cell Stress Chaperones 6: 177–189, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pérez-Salamó, I., Papdi, C., Rigó, G., Zsigmond, L., Vilela, B., Lumbreras, V., Nagy, I., Horváth, B., Domoki, M., Darula, Z., Medzihradszky, K., Bögre, L., Koncz, C., Szabados, L.: The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. — Plant Physiol. 165: 319–334, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Personat, J.M., Tejedor-Cano, J., Prieto-Dapena, P., Almoguera, C., Jordano, J.: Co-overexpression of two heat shock factors results in enhanced seed longenity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. — BMC Plant Biol. 14: 56, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Powles, S.B.: Photoinhibition of photosynthesis induced by visible light. — Annu. Rev. Plant Physiol. 35: 15–44, 1984.CrossRefGoogle Scholar
  27. Qu, A.L., Ding, Y.F., Jiang, Q., Zhu, C.: Molecular mechanisms of the plant heat stress response. — Biochem. biophys. Res. Commun. 432: 203–207, 2013.CrossRefPubMedGoogle Scholar
  28. Scarpeci, T.E., Zanor, M.I., Carrillo, N., Mueller-Roeber, B., Valle, E.M.: Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. — Plant mol. Biol. 66: 361–378, 2008a.CrossRefPubMedGoogle Scholar
  29. Scarpeci, T.E., Zanor, M.I., Valle, E.M.: Investigating the role of plant heat shock proteins during oxidative stress. — Plant Signal. Behav. 3: 856–857, 2008b.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Scharf, K.D., Berberich, T., Ebersberger, I., Nover, L.: The plant heat stress transcription factor (Hsf) family: structure, function and evolution. — Biochim. biophys. Acta 1819: 104–119, 2012.CrossRefPubMedGoogle Scholar
  31. Scharf, K.D., Heider, H., Höhfeld, I., Lyck, R., Schmidt, E., Nover, L.: The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. — Mol. Cell. Biol. 18: 2240–2251, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shim, D., Hwang, J.U., Lee, J., Lee, S., Choi, Y., An, G., Martinoia, E., Lee, Y.: Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. — Plant Cell 21: 4031–4043, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Takahashi, S., Badger, M.R.: Photoprotection in plants: a new light on photosystem II damage. — Trends Plant Sci. 16: 53–60, 2011.CrossRefPubMedGoogle Scholar
  34. Takahashi, S., Murata, N.: How do environmental stresses accelerate photoinhibition? — Trends Plant Sci. 13: 178–182, 2008.CrossRefPubMedGoogle Scholar
  35. Tejedor-Cano, J., Carranco, R., Personat, J.M., Prieto-Dapena, P., Almoguera, C., Espinosa, J.M., Jordano, J.: A passive repression mechanism that hinders synergic transcriptional activation by heat shock factors involved in sunflower seed longevity. — Mol. Plant 7: 256–259, 2014.CrossRefPubMedGoogle Scholar
  36. Vass, I.: Molecular mechanisms of photodamage in the photosystem II complex. — Biochim. biophys. Acta 1817: 209–217, 2012.CrossRefPubMedGoogle Scholar
  37. Von Koskull-Döring, P., Scharf, K.D., Nover, L.: The diversity of plant heat stress transcription factors. — Trends Plant Sci. 12: 452–457, 2007.CrossRefGoogle Scholar
  38. Wang, L.C., Tsai, M.C., Chang, K.Y., Fan, Y.S., Yeh, C.H., Wu, S.J.: Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. — J. exp. Bot. 62: 3609–3620, 2011.CrossRefPubMedGoogle Scholar
  39. Wang, L.C., Wu, J.R., Chang, W.L., Yeh, C.H., Ke, Y.T., Lu, C.A., Wu, S.J.: Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. — J. exp. Bot. 64: 1689–1701, 2013.CrossRefPubMedGoogle Scholar
  40. Wang, L.C., Wu, J.R., Hsu, Y.J., Wu, S.J.: Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleoculs in response to heat stress. — New Phytol. 205: 544–554, 2015.CrossRefPubMedGoogle Scholar
  41. Wu, J.R., Wang, L.C., Lin, Y.R., Weng, C.P., Yeh, C.H., Wu, S.J.: The Arabidopsis heat-intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant response to heat stress. — New Phytol. 213: 1181–1193, 2017.CrossRefPubMedGoogle Scholar
  42. Wu, S.J., Wang, L.C., Yeh, C.H., Lu, C.A., Wu, S.J.: Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. — New Phytol. 186: 833–842, 2010.CrossRefPubMedGoogle Scholar
  43. Yamanouchi, U., Yano, M., Lin, H., Ashikari, M., Yamada, K.: A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. — Proc. nat. Acad. Sci. USA 99: 7530–7535, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yoo, S.D., Cho, Y.H., Sheen, J.: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. — Nat. Protoc. 2: 1565–1572, 2007.CrossRefPubMedGoogle Scholar
  45. Zsigmond, L., Szepesi, Á., Tari, I., Rigó, G., Király, A., Szabados, L.: Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. — Plant Sci. 182: 87–93, 2012.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Department of Life SciencesNational Central UniversityTaoyuan CityTaiwan

Personalised recommendations