Advertisement

Biologia Plantarum

, Volume 62, Issue 1, pp 97–108 | Cite as

Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean

  • S. C. Huang
  • G. H. Lu
  • C. Y. Tang
  • Y. J. Ji
  • G. S. Tan
  • D. Q. Hu
  • J. Cheng
  • G. H. Wang
  • J. L. Qi
  • Y. H. Yang
Original papers

Abstract

Aluminum (Al) toxicity in acidic soils is a major factor restricting crop production. Although the molecular mechanisms of Al responses have been extensively investigated, microRNA (miRNA) mediated differential Al tolerance in different soybean genotypes remains largely unknown. In this study, two soybean [Glycine max (L.) Merr.] genotypes, Al-tolerant BX10 and Al-sensitive BD2, were treated with 0 and 50 μM AlCl3 and then used to construct the miRNA libraries for deep sequencing. Results revealed 453 miRNAs, whose expression patterns were affected by Al stress. We also identified 32 differentially expressed miRNAs: 19 in BX10, 7 in BD2, and 6 in both genotypes. The gene ontology analysis of their putative target genes indicated that stress-responsive genes and amino-acid-metabolism-related processes preferentially existed in BX10. Comprehensive analysis demonstrated that conserved miRNAs, such as gma-miR166k/o, gma-miR390g, and gma-miR396c/k, mediated root elongation in BX10, whereas gma-miR169r triggered oxidative stress in BD2. These processes could be regarded as important mechanisms conferring differential Al tolerance in BX10 and BD2. This study provided new insights into different Al response mechanisms in various soybean genotypes.

Additional key words

abiotic stress acidic soil gene sequencing Glycine max target genes 

Abbreviations

DEMs

differently expressed miRNAs

GO

gene ontology

miRNA

microRNA

MFE

minimum free energy

nt

nucleotide

PCA

principle component analysis

qPCR

time quantitative PCR

RLM-5’RACE

RNA ligase-mediated rapid amplification of 5’ cDNA ends

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2017_752_MOESM1_ESM.pdf (250 kb)
Supplementary material, approximately 251 KB.

References

  1. Bao, F., Huang, X., Zhu, C., Zhang, X., Li, X., Yang, S.: Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses. — New Phytol. 202: 1320–1334, 2014.CrossRefPubMedGoogle Scholar
  2. Barrera-Figueroa, B.E., Gao, L., Diop, N.N., Wu, Z., Ehlers, J.D., Roberts, P.A., Close, T.J., Zhu, J.K., Liu, R.: Identification and comparative analysis of droughtassociated microRNAs in two cowpea genotypes. — BMC Plant Biol. 11: 127–136, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barte, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. — Cell 116: 281–297, 2004.CrossRefGoogle Scholar
  4. Casadevall, R., Rodriguez, R.E., Debernardi, J.M., Palatnik, J.F., Casati, P.: Repression of growth regulating factors by the MicroRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. — Plant Cell 25: 3570–3583, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen, L., Wang, T., Zhao, M., Tian, Q., Zhang, W.H.: Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. — Planta 235: 375–386, 2012.CrossRefPubMedGoogle Scholar
  6. Cho, E.K., Choi, Y.J.: A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. — Biotechnol. Lett. 31: 597–606, 2009.CrossRefPubMedGoogle Scholar
  7. Dai, X., Zhao, P.X.: psRNATarget: a plant small RNA target analysis server. - — Nucl. Acids Res. 39: 155–159, 2011.CrossRefGoogle Scholar
  8. Ding, Y., Chen, Z., Zhu, C.: Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). — J. exp. Bot. 62: 3563–3573, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ding, Y., Ye, Y., Jiang, Z., Wang, Y., Zhu, C.: MicroRNA390 is involved in cadmium tolerance and accumulation in rice. — Front. Plant Sci. 7: 235, 2016.PubMedPubMedCentralGoogle Scholar
  10. Dong, D., Peng, X., Yan, X.: Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. — Physiol. Plant. 122: 190–199, 2004.CrossRefGoogle Scholar
  11. Floyd, S.K., Bowman, J.L.: Gene regulation: ancient microRNA target sequences in plants. — Nature 428: 485–486, 2004.CrossRefPubMedGoogle Scholar
  12. Gao, P., Bai, X., Yang, L., Lv, D., Li, Y., Cai, H., Ji, W., Guo, D., Zhu, Y.: Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. — Planta 231: 991–1001, 2010.CrossRefPubMedGoogle Scholar
  13. Hawker, N.P., Bowman, J.L.: Roles for class III HD-Zip and KANADI genes in Arabidopsis root development. — Plant Physiol. 135: 2261–2270, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  14. He, H., He, L., Gu, M.: Role of microRNAs in aluminum stress in plants. — Plant Cell Rep. 33: 831–836, 2014.CrossRefPubMedGoogle Scholar
  15. Hobert, O.: Common logic of transcription factor and microRNA action. — Trends Biochem. Sci. 29: 462–468, 2004.CrossRefPubMedGoogle Scholar
  16. Huang, C.F., Yamaji, N., Ono, K., Ma, J.F.: A leucine-rich repeat receptor-like kinase gene is involved in the specification of outer cell layers in rice roots. — Plant J. 69: 565–576, 2012.CrossRefPubMedGoogle Scholar
  17. Hue, N., Craddock, G., Adams, F.: Effect of organic anions on aluminum toxicity in subsoil. — Soil Sci. Soc. Amer. J. 50: 28–34, 1986.CrossRefGoogle Scholar
  18. Jung, J.H., Park, C.M.: MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. — Planta 225: 1327–1338, 2007.CrossRefPubMedGoogle Scholar
  19. Koshino-Kimura, Y., Wada, T., Tachibana, T., Tsugeki, R., Ishiguro, S., Okada, K.: Regulation of transcription by MYB proteins for root epidermis differentiation in Arabidopsis. — Plant Cell Physiol. 46: 817–826, 2005.CrossRefPubMedGoogle Scholar
  20. Kozomara, A., Griffiths-Jones, S.: miRBase: annotating high confidence microRNAs using deep sequencing data. — Nucl. Acids Res. 42: 68–73, 2014.CrossRefGoogle Scholar
  21. Kulcheski, F.R., De Oliveira, L.F., Molina, L.G., Almerao, M.P., Rodrigues, F.A., Marcolino, J., Barbosa, J.F., Stolf-Moreira, R., Nepomuceno, A.L., Marcelino-Guimaraes, F.C., Abdelnoor, R.V., Nascimento, L.C., Carazzolle, M.F., Pereira, G.A., Margis, R.: Identification of novel soybean microRNAs involved in abiotic and biotic stresses. — BMC Genomics 12: 307, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lehfeldt, C., Shirley, A., Meyer, K., Ruegger, M., Cusumano, J., Viitanen, P., Strack, D., Chapple, C.: Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. — Plant Cell 12: 1295–1306, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Leung, A.K.L., Sharp, P.A.: MicroRNA functions in stress responses. — Mol. Cells 40: 205–215, 2010.CrossRefGoogle Scholar
  24. Li, H., Deng, Y., Wu, T., Subramanian, S., Yu, O.: Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. — Plant Physiol. 153: 1759–1770, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li, H., Dong, Y., Yin, H., Wang, N., Yang, J., Liu, X., Wang, Y., Wu, J., Li, X.: Characterization of the stress associated microRNAs in Glycine max by deep sequencing. — BMC Plant Biol. 11: 170, 2011a.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li, T., Li H., Zhang, Y.X., Liu, J.Y.: Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). — Nucl. Acids Res. 39: 2821–2833, 2011b.CrossRefPubMedGoogle Scholar
  27. Li, Y., Yang, T., Zhang, P., Zou, A., Peng, X., Wang, L., Yang, R., Qi, J., Yang, Y.: Differential responses of the diazotrophic community to aluminum-tolerant and aluminum-sensitive soybean genotypes in acidic soil. — Eur. J. Soil Biol. 53: 76–85, 2012.CrossRefGoogle Scholar
  28. Lima, J.C., Arenhart, R.A., Margis-Pinheiro, M., Margis, R.: Aluminum triggers broad changes in microRNA expression in rice roots. — Genet. mol. Res. 10: 2817–2832, 2011.CrossRefPubMedGoogle Scholar
  29. Liu, H., Wang, X., Zhang, H., Yang, Y., Ge, X., Song, F.: A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. — Gene 420: 57–65, 2008.CrossRefPubMedGoogle Scholar
  30. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. — Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  31. Majoul, T., Bancel, E., Triboï, E., Ben Hamida, J., Branlard, G.: Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from total endosperm. — Proteomics 3: 175–183, 2003.CrossRefPubMedGoogle Scholar
  32. Mandel, T., Candela, H., Landau, U., Asis, L., Zilinger, E., Carles, C., Williams, L.: Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. — Development 143: 1612–1622, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Manzano, D., Fernández-Busquets, X., Schaller, H., González, V., Boronat, A., Arró, M., Ferrer, A.: The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyldiphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity. — Planta 219: 982–992, 2004.CrossRefPubMedGoogle Scholar
  34. Matsumoto, H.: Molecular aspect of Al tolerance in crop plants: novel Al-activated malate transporter gene in wheat roots. — Soil Sci. Plant Nutr. 51: 613–615, 2005.CrossRefGoogle Scholar
  35. Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, J.C., Chen, X., Green, P.J., Griffiths-Jones, S., Jacobsen, S.E., Mallory, A.C., Martienssen, R.A., Poethig, R.S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D., Zhu, J.K.: Criteria for annotation of plant MicroRNAs. — Plant Cell 20: 3186–3190, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mi, H., Poudel, S., Muruganujan, A., Casagrande, J.T., Thomas, P.D.: PANTHER version 10: expanded protein families and functions, and analysis tools. - Nucl. Acids Res. 44: D336–D342, 2016.CrossRefPubMedGoogle Scholar
  37. Nie, Z., Ren, Z., Wang, L., Su, S., Wei, X., Zhang, X., Wu, L., Liu, D., Tang, H., Liu, H., Zhang, S., Gao, S.: Genomewide identification of microRNAs responding to early stages of phosphate deficiency in maize. — Physiol. Plant. 157: 161–174, 2016.CrossRefPubMedGoogle Scholar
  38. Pang, K.C., Frith, M.C., Mattick, J.S.: Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. — Trends Genet. 22: 1–5, 2006.CrossRefPubMedGoogle Scholar
  39. Park, S., Moon, J.C., Park, Y.C., Kim, J.H., Kim, D.S., Jang, C.S.: Molecular dissection of the response of a rice leucinerich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. — J. Plant Physiol. 171: 1645–1653, 2014.CrossRefPubMedGoogle Scholar
  40. Paul, I., Ulrike, O., Franz, S.: Microbiological properties in acidic forest soils with special consideration of KCl extractable Al. — Water Air Soil Pollut. 148: 3–14, 2003.CrossRefGoogle Scholar
  41. Pina, R., Cervantes, C.: Microbial interactions with aluminum. — Biometals 9: 311–316, 1996.CrossRefPubMedGoogle Scholar
  42. Rodriguez, R.E., Ercoli, M.F., Debernardi, J.M., Breakfield, N.W., Mecchia, M.A., Sabatini, M., Cools, T., De Veylder, L., Benfey, P.N., Palatnik, J.F.: MicroRNA miR396 regulates the switch between stem cells and transitamplifying cells in Arabidopsis roots. — Plant Cell 27: 1–13, 2015.CrossRefGoogle Scholar
  43. Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M.S., Suravajhala, P., Kavi Kishor, P.B.: Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. — Biometals 29: 187–210, 2016.CrossRefPubMedGoogle Scholar
  44. Simões, C.C., Melo, J.O., Magalhães, J.V., Guimarães, C.T.: Review genetic and molecular mechanisms of aluminum tolerance in plants. — Genet. mol. Res. 11: 1949–1957, 2012.CrossRefPubMedGoogle Scholar
  45. Singh, A., Singh, S., Panigrahi, K.C.S., Reski, R., Sarkar, A.K.: Balanced activity of microRNA166/165 and its target transcripts from the class III homeodomain-leucine zipper family regulates root growth in Arabidopsis thaliana. — Plant Cell Rep. 33: 945–953, 2014.CrossRefPubMedGoogle Scholar
  46. Singha, L.B., Khan, M.H.: Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata)? — Bulg. J. Plant Physiol. 29: 77–86, 2003.Google Scholar
  47. Song, D.H., Li, G.J., Song, F.M., Zheng, Z.: Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. — Mol. Biol. Rep. 35: 275–283, 2008.CrossRefPubMedGoogle Scholar
  48. Song, Q.X., Liu, Y.F., Hu, X.Y., Zhang, W.K., Ma, B., Chen, S.Y., Zhang, J.S.: Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. — BMC Plant Biol. 11: 5–20, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sun, X., Ji, W., Ding, X., Bai, X., Cai, H., Yang, S., Qian, X., Sun, M., Zhu, Y.: GsVAMP72, a novel Glycine soja RSNARE protein, is involved in regulating plant salt tolerance and ABA sensitivity. — Plant Cell Tissue Organ Cult. 113: 199–215, 2012.CrossRefGoogle Scholar
  50. Sunkar, R., Kapoor, A., Zhu, J.K.: Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. — Plant Cell 18: 2051–2065, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Szalonek, M., Sierpien, B., Rymaszewski, W., Gieczewska, K., Garstka, M., Lichocka, M., Sass, L., Paul, K., Vass, I., Vankova, R.: Potato annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum. — PLoS ONE 10: e0132683, 2015.CrossRefGoogle Scholar
  52. Tang, C.Y., Yang, M.K., Wu, F.Y., Zhao, H., Pang, Y.J., Yang, R.W., Lu, G.H., Yang, Y.H.: Identification of miRNAs and their targets in transgenic Brassica napus and its acceptor (Westar) by high-throughput sequencing and degradome analysis. — RSC Adv. 5: 165–219, 2015.Google Scholar
  53. Valdés, A.E., Övernäs, E., Johansson, H., Rada-Iglesias, A., Engström, P.: The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. — Plant mol. Biol. 80: 405–418, 2012.CrossRefPubMedGoogle Scholar
  54. Van, O.G., Mayr, G., Kasiem, M.M., Albrecht, M., Cornelissen, B.J., Takken, F.L.: Structure-function analysis of the NBARC domain of plant disease resistance proteins. — J. exp. Bot. 59: 1383–1397, 2008.CrossRefGoogle Scholar
  55. Voinnet, O.: Origin, biogenesis, and activity of plant microRNAs. — Cell 136: 669–687, 2009.CrossRefPubMedGoogle Scholar
  56. Wada, T., Hayashi, N., Tominagawada, R.: Root hair formation at the root-hypocotyl junction in CPC-LIKE MYB double and triple mutants of Arabidopsis. — Plant Signal. Behav. 10: e1089372, 2015.CrossRefGoogle Scholar
  57. Wen, Z., Yao, L., Wan, R., Li, Z., Liu, C., Wang, X.: Ectopic expression in Arabidopsis thaliana of an NB-ARC encoding putative disease resistance gene from wild Chinese Vitis pseudoreticulata enhances resistance to phytopathogenic fungi and bacteria. — Front. Plant Sci. 6: 1087–1099, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Xie, Y.: The role of REVOLUTA and KANADI1 in plant development and environmental responses. - Thesis, Universität Tübingen, Tübingen 2015.Google Scholar
  59. Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S., Matsumoto, H.: Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. — Plant Physiol. 128: 63–72, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yang, J., Ning, Z., Mi, X., Wu, L., Rui, M., Xi, Z., Lei, Y., Xin, J., Si, H., Di, W.: Identification of miR159s and their target genes and expression analysis under drought stress in potato. — Comput. Biol. Chem. 53: 204–213, 2014.CrossRefGoogle Scholar
  61. Yang, T., Liu, G., Li, Y., Zhu, S., Zou, A., Qi, J., Yang, Y.: Rhizosphere microbial communities and organic acids secreted by aluminum-tolerant and aluminum-sensitive soybean in acid soil. — Biol. Fertil. Soils 48: 97–108, 2012.CrossRefGoogle Scholar
  62. Yip, H.K., Floyd, S.K., Sakakibara, K., Bowman, J.L.: Class III HD-Zip activity coordinates leaf development in Physcomitrella patens. — Dev. Biol. 419: 184–197, 2016.CrossRefPubMedGoogle Scholar
  63. Zeng, Q.Y., Yang, C.Y., Ma, Q.B., Li, X.P., Dong, W.W., Nian, H.: Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. — BMC Plant Biol. 12: 182, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhang, B., Li, X., Wang, X., Zhang, S., Liu, D., Duan, Y., Dong, W.: Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. — PLoS ONE 7: e39650, 2012.CrossRefGoogle Scholar
  65. Zhen, Y., Miao, L., Su, J., Liu, S.H., Yin, Y.L., Wang, S.S., Pang, Y.J., Shen, H.G., Tian, D., Qi, J.L., Yang, Y.H.: Differential responses of anti-oxidative enzymes to aluminum stress in tolerant and sensitive soybean genotypes. — J. Plant Nutr. 32: 1255–1270, 2009.CrossRefGoogle Scholar
  66. Zhen, Y., Qi, J.L., Wang, S.S., Su, J., Xu, G.H., Zhang, M.S., Miao, L., Peng, X.X., Tian, D., Yang, Y.H.: Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. — Physiol. Plant. 131: 542–554, 2007.CrossRefPubMedGoogle Scholar
  67. Zhou, Z.S., Huang, S.Q., Yang, Z.M.: Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. — Biochem. biophys. Res. Commun. 374: 538–542, 2008.CrossRefPubMedGoogle Scholar
  68. Zhou, Z.S., Zeng, H.Q., Liu, Z.P., Yang, Z.M.: Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. — Plant Cell Environ. 35: 86–99, 2012.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • S. C. Huang
    • 1
    • 2
    • 3
  • G. H. Lu
    • 1
    • 2
  • C. Y. Tang
    • 1
    • 2
  • Y. J. Ji
    • 1
  • G. S. Tan
    • 1
  • D. Q. Hu
    • 1
  • J. Cheng
    • 1
  • G. H. Wang
    • 1
  • J. L. Qi
    • 1
  • Y. H. Yang
    • 1
    • 2
  1. 1.Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingP.R. China
  2. 2.Jiangsu Collaborative Innovation Center for Modern CropNanjing Agricultural UniversityNanjingP.R. China
  3. 3.College of Life ScienceAnhui Science and Technology UniversityFengyangP.R. China

Personalised recommendations