Biologia Plantarum

, Volume 62, Issue 1, pp 166–172 | Cite as

The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips

Original papers


The effects of silver nanoparticles (AgNPs), silver ions (Ag+), and polyvinylpyrrolidone (PVP) on mitosis and expression of a gene encoding cyclin-dependent kinase 2 (cdc2) in onion roots were compared. Three concentrations (5, 10, and 15 mg dm-3) were employed in combination with three incubation times (3, 6, and 9 h). PVP enhanced mitotic index and cdc2 expression. Both silver forms decreased mitotic index and cdc2 expression. Genotoxicity of both silver forms were indicated by three major distinguishable classes of chromosome aberrations: spindle disturbances, clastogenic aberrations, and chromosome stickiness. Concerning Ag+ treatments, significant enhancements in occurrence of any chromosome aberration type was associated with significant decrease in mitotic index. On the other hand, disturbed spindle in AgNPs treatments was observed even in absence of significant reduction in mitotic index suggesting that AgNPs inhibit cellular events occurring during mitosis to proceed normally rather than starting of cell division.

Additional key words

chromosome aberrations mitotic index mitotic abnormalities phase index real-time PCR 



silver ion


silver nanoparticles


cyclin-dependent kinases


cyclin dependent kinase like




deionized water


engineered nanoparticles


least significant difference




transmission electron microscopy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2017_751_MOESM1_ESM.pdf (488 kb)
Supplementary material, approximately 489 KB.


  1. Babaei, N., Abdullah, N.A.P., Saleh, G., Abdullah, T.L.: Control of contamination and explant browning in Curculigo latifolia in vitro cultures. — J. med. Plants Res. 7: 448–454, 2013.Google Scholar
  2. Bhushan, B. (ed.): Springer Handbook of Nanotechnology. 3rd Edition. - Springer-Verlag, Berlin - Heidelberg 2010.CrossRefGoogle Scholar
  3. Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbuhler, K.: Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. — Sci. Total Environ. 390: 396–409, 2008.CrossRefPubMedGoogle Scholar
  4. Boruc, J., Mylle, E., Duda, M., De Clercq, R., Rombauts, S., Geelen, D., Hilson, P., Inze, D., Van Damme, D., Russinova, E.: Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. — Plant Physiol. 152: 553–565, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. De Veylder, L., Beeckman, T., Inze, D.: The ins and outs of the plant cell cycle. — Nat. Rev. mol. cell. Biol. 8: 655–665, 2007.CrossRefPubMedGoogle Scholar
  6. Francis, D.: What’s new in the plant cell cycle? - In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (ed): Progress in Botany. Vol. 70. Pp. 33–49. Springer-Verlag, Berlin - Heidelberg 2009.CrossRefGoogle Scholar
  7. Hemerly, A., De Almeida Engler, J., Bergounioux, C., Van Montagu, M., Engler, G., Inzé, D., Ferreira, P.: Dominant negative mutants of the CDC2 kinase uncouple cell division from iterative plant development. — EMBO J. 14: 3925–3936, 1995.PubMedPubMedCentralGoogle Scholar
  8. Hemerly, A.S., Ferreira, P., Engler, J., Van Montagu, M., Engler, G., Lnze, D.: cdc2a expression in Arabidopsis is linked with competence for cell division. - — Plant Cell 5: 1711–1723, 1993.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hirayama, T., Imajuku, Y., Anai, T., Matsui, M., Oka, A.: Identification of two cell-cycle controlling cdc2 gene homologs in Arabidopsis thaliana. — Gene 105: 159–165, 1991.CrossRefPubMedGoogle Scholar
  10. Jo, Y.K., Kim, B.H., Jung, G.: Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. — Plant Dis. 93: 1037–1043, 2009.CrossRefGoogle Scholar
  11. John, P.C., Mews, M., Moore, R.: Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. — Protoplasma 216: 119–42, 2001.CrossRefPubMedGoogle Scholar
  12. Kaveh, R., Li, Y-S., Ranjbar, S., Tehrani, R., Brueck, C.L., Van Aken, B.: Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. — Environ. Sci. Technol. 47: 10637–10644, 2013.CrossRefPubMedGoogle Scholar
  13. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.-Y.: Antimicrobial effects of silver nanoparticles. — Nanomed. Nanotechnol. Biol. Med. 3: 95–101, 2007.CrossRefGoogle Scholar
  14. Kitsios, G., Doonan, J.H.: Cyclin dependent protein kinases and stress responses in plants. — Plant Signal. Behav. 6: 204–209, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kittler, S., Greulich, C., Köller, M., Epple, M.: Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. — Mater. Sci. Eng. Technol. 40: 258–264, 2009.Google Scholar
  16. Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability and effects. — Environ. Toxicol. Chem. 27: 1825–1851, 2008.CrossRefPubMedGoogle Scholar
  17. Kumari, M., Mukherjee, A., Chandrasekaran, N.: Genotoxicity of silver nanoparticles in Allium cepa. — Sci. Total Environ. 407: 5243–5246, 2009.CrossRefPubMedGoogle Scholar
  18. Ma, X., Geiser-Lee, J., Deng, Y., Kolmakov, A.: Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. — Sci. Total Environ. 408: 3053–3061, 2010.CrossRefPubMedGoogle Scholar
  19. Nymark, P., Catalán, J., Suhonen, S., Järventaus, H., Birkedal, R., Clausen, P.A., Jensen, K.A., Vippola, M., Savolainen, K., Norppa, H.: Genotoxicity of polyvinylpyrrolidonecoated silver nanoparticles in BEAS 2B cells. — Toxicology 8: 38–48, 2013.CrossRefGoogle Scholar
  20. Panda, K.K., Achary, V.M.M., Phaomie, G., Sahu, H.K., Parinandi, N.L., Panda, B.B.: Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay. — Mutag. Res. 806: 11–23, 2016.Google Scholar
  21. Park, H.J., Kim, S.H., Kim, S.J., Choi, S.H.: A new composition of nanosized silica-silver for control of various plant diseases. — Plant Pathol. J. 22: 295–302, 2006.CrossRefGoogle Scholar
  22. Pesnya, D.S.: Cytogenetic effects of chitosan-capped silver nanoparticles in the Allium cepa test. — Caryologia 66: 275–281, 2013.CrossRefGoogle Scholar
  23. Prokhorova, I.M., Kibrik, B.S., Pavlov, A.V., Pesnya, D.S.: Estimation of mutagenic effect and modifications of mitosis by silver nanoparticles. — Bull. exp. Biol. Med. 156: 255–259, 2013.CrossRefPubMedGoogle Scholar
  24. Pulate, P.V., Ghurde, M.U., Deshmukh, V.R.: Cytological effect of the biological and chemical silver nano particle in Allium cepa (L). — Inter. J. Innov. biol. Sci. 1: 32–35, 2011.Google Scholar
  25. Rasouli, H., Hosein, M., Kamran, F., Mohammadzadeh, M.S., Khodarahmi, R.: Review: Plant cell cancer: may natural phenolic compounds prevent onset and development of plant cell malignancy? — Molecules 21: 1104–1129, 2016.CrossRefGoogle Scholar
  26. Remédios, C., Rosário, F., Bastos, V.: Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. — J. Bot. 2012: 1–8, 2012.CrossRefGoogle Scholar
  27. Savithramma, N., Ankanna, S., Bhumi, G.: Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. — Nano Vision 2: 61–68, 2012.Google Scholar
  28. Schmid, G. (ed): Nanoparticles: From Theory to Application. - Wiley, Weinheim 2010.CrossRefGoogle Scholar
  29. Scolnick, D., Halazonetis, T.: Chfr defines a mitotic stress checkpoint that delays entry into metaphase. — Nature 406: 430–435, 2000.CrossRefPubMedGoogle Scholar
  30. Shahrokh, S., Emtiazi, G.: Toxicity and unusual biological behavior of nanosilver on gram positive and negative bacteria assayed by microtiter-plate. — Eur. J. biol. Sci. 1: 28–31, 2009.Google Scholar
  31. Shimelis, D., Bantte, K., Feyissa, T.: Effects of polyvinyl pyrrolidone and activated charcoal to control effect of phenolic oxidation on in vitro culture establishment stage of micropropagation of sugarcane (Saccharum officinarum L.). — Adv. Crop Sci. Technol. 3: 184–187, 2015.Google Scholar
  32. Stals, H., Bauwens, S., Traas, J., Van Montagu, M., Engler, G., Inzé, D.: Plant CDC2 is not only targeted to the preprophase band, but is also co-located with the spindle, phragmoplast, and chromosomes. — FEBS Lett. 418: 229–234, 1997.CrossRefPubMedGoogle Scholar
  33. Syu, Y.Y., Hung, J.H., Chen, J.C., Chuang, H.W.: Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. — Plant Physiol. Biochem. 83: 57–64, 2014.CrossRefPubMedGoogle Scholar
  34. Tank, J.G., Thaker, V.S.: Cyclin-dependent kinases and their role in regulation of plant cell cycle. — Biol. Plant. 55: 201–212, 2011.CrossRefGoogle Scholar
  35. Vu, H.Q., El-Sayed, M.A., Ito, S-I., Yamauchi, N., Shigyo, M.: Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa aggregatum group. — Genome 55: 797–807, 2012.CrossRefPubMedGoogle Scholar
  36. Yu, S-J., Yin, Y-G., Liu, J-F.: Silver nanoparticles in the environment. — Environ. Sci. Processes Impacts 15: 78–92, 2013.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Botany and Microbiology Department, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations