Abstract
Aluminum (Al) is the main limiting factor for crop production in acidic soils. Efflux of organic acids is one of the mechanisms that determine Al-tolerance, and an Al-activated citrate transporter (multidrug and toxic compound extrusion) MATE1 gene is involved in different species. The contribution of the rye MATE1 gene (ScMATE1) depends on the rye (Secale cereale L.) cultivars and the crosses analyzed; there is no information about different rye species. The cDNA sequences, phylogenetic relationships, Al-tolerance, citrate exudation, and expression of the ScMATE1 gene were analyzed in several cultivars and wild species/subspecies of the Secale genus. Genotypes highly tolerant to Al were found within this genus. For the first time, sequences of the cDNA of the ScMATE1 gene were isolated and characterized in wild ryes. At least two copies of this gene were found likely to be related to Al-tolerance. The sequence comparison of 13 exons of ScMATE1 revealed variability between species, but also inter- and intra-cultivars. Variations were found in the Al-induced expression of ScMATE1 gene, as well as its contribution to Al-tolerance. The pattern of citrate exudation was inducible in most of the species/subspecies studied and constitutive in few. The phylogenetic analysis indicated that ScMATE1 is orthologue of two genes (HvMATE1 and TaMATE1) involved in the Al stress response in barley and wheat, respectively, but not orthologue of SbMATE, implicated in Al-tolerance in sorghum. ScMATE1 is involved in the response to Al stress in ryes, but its contribution to Al-tolerance is complex, and like in other species, there are tolerant and sensitive alleles in the different cultivars and species studied.
This is a preview of subscription content, access via your institution.
Abbreviations
- ALMT:
-
Al-activated malate transporter
- fd:
-
fold differences
- MATE:
-
multidrug and toxic compound extrusion (Al-activated citrate transporter)
- qPCR:
-
quantitative polymerase chain reaction
- RT-PCR:
-
reverse transcription polymerase chain reaction
- sqPCR:
-
semiquantitative PCR
References
Aniol, A., Gustafson, J.P.: Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. — Can. J. Genet. Cytol. 26: 701–705, 1984.
Benito, C., Silva-Navas, J., Fontecha, G., Hernández-Riquer, M.V., Eguren, M., Salvador, N., Gallego, F.J.: From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. — Plant Soil 327: 107–120, 2010.
Basu, U., Godbold, D., Taylor, G.J.: Aluminium resistance in Triticum aestivum L. associated with enhanced exudation of malate. — J. Plant Physiol. 144: 747–753, 1994.
Chikmawati, T., Skovmand, B., Gustafson, J.P.: Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. — Genome 48: 792–801, 2005.
Collins, N.C., Shirley, N.J., Saeed, M., Pallotta, M., Gustafson, J.P.: An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). — Genetics 179: 669–682, 2008.
Contreras, R., Figueiras, A.M., Gallego, F.J., Benito, C.: Brachypodium distachyon: a model species for aluminium tolerance in Poaceae. — Funct. Plant Biol. 41: 1270–1283, 2014.
Cuadrado, A., Jouve, N.: Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. — Amer. Genet. Assoc. 93: 339–345, 2002.
Dagley, S.: Citrate: UV spectrophotometer determination. - In: Bergmeyer, H.U., Gawehn, K. (ed.): Methods of Enzymatic Analysis. 2nd English Ed. Pp. 1562–1565. Academic Press, New York 1974.
De Bustos, A., Jouve, N.: Phylogenetic relationships of the genus Secale based on the characterization of rDNA ITS sequences. — Plant Syst. Evol. 235: 147–154, 2002.
Delhaize, E., Gruber, B.D., Ryan, P.R.: The roles of organic anion permeases in aluminium resistance and mineral nutrition. — FEBS Lett. 581: 2255–2262, 2007.
Delhaize, E., Ryan, P.R., Randall, P.J.: Aluminum tolerance in wheat (Triticum aestivum 1.) II. Aluminum-stimulated excretion of malic acid from root apices. — Plant Physiol. 103: 695–702, 1993.
Fu, S., Tang, Z., Ren, Z., Zhang, H., Yan, B.: Isolation of ryespecific DNA fragment and genetic diversity analysis of rye genus Secale L. using wheat SSR markers. — J. Genet. 89: 489–492, 2010.
Fujii, M., Yokosho, K., Yamaji, N., Saisho, D., Yamane, M., Takahashi, H., Sato, K., Nakazono, M., Ma, J.F.: Acquisition of aluminium tolerance by modification of a single gene in barley. — Nat. Commun. 3: 713, 2012.
Fontecha, G., Silva-Navas, J., Benito, C., Mestres, M.A., Espino, F.J., Hernández-Riquer, M.V., Gallego, F.J.: Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). — Theor. appl. Genet. 114: 249–260, 2007.
Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K., Ma, J.F.: An aluminum-activated citrate transporter in barley. — Plant Cell Physiol. 48: 1081–1091, 2007.
Gale, M.D., Devos, K.M.: Comparative genetics in the grasses. — Proc. nat. Acad. Sci. USA 95: 1971–1974, 1998.
Gallego, F.J., Benito, C.: Genetic control of aluminium tolerance in rye (Secale cereale L.). — Theor. appl. Genet. 95: 393–399, 1997.
Hoekenga, O., Magalhães, J.: Mechanisms of aluminum tolerance. - In: Oliveira, A.C., Varshney, R. (ed.): Root Genomics. Pp. 133–153. Springer-Verlag, Berlin - Heidelberg 2011.
Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayashi, S., Ikka, T., Hirayama, T., Shinozaki, K., Kobayashi, M.: Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. — Proc. nat. Acad. Sci. USA 104: 9900–9905, 2007.
Khush, G.S.: Cytogenetic and evolutionary studies in Secale, II. Interrelationships in the wild species. — Evolution 16: 484–496, 1962.
Li, X.F., Ma, J.F., Matsumoto, H.P.C.: Pattern of aluminuminduced secretion of organic acids differs between rye and wheat. — Plant Physiol. 123: 1537–1543, 2000.
Librado, P., Rozas, J.: DnaSP v5.1: a software for comprehensive analysis of DNA polymorphism data. — Bioinformatics 25: 1451–1452, 2009.
Liu, J., Magalhães, J.V., Shaff, J., Kochian, L.V.: Aluminumactivated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. — Plant J. 57: 389–399, 2009.
Ma, J.F., Nagao, S., Sato, K., Ito, H., Furukawa, J., Takeda, K.: Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. — J. exp. Bot. 55: 1335–1341, 2004.
Ma, J.F., Zheng, S.J., Matsumoto, H.: Specific secretion of citric acid induced by Al Stress in Cassia tora L. — Plant Cell Physiol. 38: 1019–1025, 1997.
Magalhães, J.V., Liu, J., Guimaraes, C.T., Lana, U.G.P., Alves, V.M.C., Wang, Y.H., Schaffert, R.E., Hoekenga, O.A., Piñeros, M.A., Shaff, J.E., Klein, P.E., Carneiro, N.P., Coelho, C.M., Trick, H.N., Kochian, L.V.: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. — Nat. Genet. 39: 1156–1161, 2007.
Maron, L.G., Guimarães, C.T., Kirst, M., Albert, P.S., Birchler, J.A., Bradbury, P.J., Buckler, E.S., Coluccio, A.E., Danilova, T.V., Kudrna, D., Magalhães, J.V., Piñeros, M.A., Schatz, M.C., Wing, R.A., Kochian, L.V.: Aluminum tolerance in maize is associated with higher MATE1 gene copy number. — Proc. nat. Acad. Sci. USA 110: 5241–5246, 2013.
Maron, L.G., Piñeros, M.A., Guimarães, C.T., Magalhães, J.V., Pleiman, J.K., Mao, C., Shaff, J., Belicuas, S.N.J., Kochian, L.V.: Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. — Plant J. 61: 728–740, 2010.
Matos, M., Camacho, M.V., Pérez-Flores, V., Pernaute, B., Pinto-Carnide, O., Benito, C.: A new aluminum tolerance gene located on rye chromosome arm 7RS. — Theor. appl. Genet. 111: 360–369, 2005.
Naranjo, T., Roca, A., Goicoechea, P.G., Giráldez, R.: Arm homoeology of wheat and rye chromosomes. — Genome 29: 873–882, 1987.
Pinto-Carnide, O., Guedes-Pinto, H.: Aluminium tolerance variability in rye and wheat Portuguese germplasm. — Genet. Resour. Crop Evol. 46: 81–85, 1999.
Ren, T.H., Chen, F., Zou, Y.T., Jia, Y.H., Zhang, H.Q., Yan, B.J., Ren, Z.L.: Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. — Genome 54: 316–326, 2011.
Ryan, P.R., Tyerman, S.D., Sasaki, T., Furuichi, T., Yamamoto, Y., Zhang, W.H., Delhaize, E.: The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. — J. exp. Bot. 62: 9–2, 2011.
Ryan, P.R., Raman, H., Gupta, S., Horst, W.J., Delhaize, E.: A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. — Plant Physiol. 149: 340–351, 2009.
Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E., Matsumoto, H.: A wheat gene encoding an aluminium-activated malate transporter. — Plant J. 37: 645–653, 2004.
Santos, E., Matos, M., Silva, P., Figueiras, A.M., Benito, C., Pinto-Carnide, O.: Molecular diversity and genetic relationships in Secale. — J. Genet. 95: 273–281, 2016.
Shang, H.Y., Wei, Y.M., Wang, X.R., Zheng, Y.L.: Genetic diversity and phylogenetic relationships in the rye genus Secale L. based on Secale cereale microsatellite markers. — Genet. mol. Biol. 29: 685–691, 2006.
Silva, S., Santos, C., Matos, M., Pinto-Carnide, O.: Al toxicity mechanism in tolerant and sensitive rye genotypes. — Environ. exp. Bot. 75: 89–97, 2012.
Silva-Navas, J., Benito, C., Téllez-Robledo, B., El-Moneim, D.A., Gallego, F.J.: The ScAACT1 gene at the Q alt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). — Mol. Breed. 30: 845–856, 2012.
Stutz, H.C.: On the origin of cultivated rye. — Amer. J. Bot. 59: 59–70, 1972.
Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. — Mol. Biol. Evol. 24: 1596–1599, 2007.
Tovkach, A., Ryan, P.R., Richardson, A.E., Lewis, D.C., Rathjen, T.M., Ramesh, S., Tyerman, S.D., Delhaize, E.: Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. — Plant Physiol. 161: 880–892, 2013.
Van der Heijden, R.T., Snel, B., Van Noort, V., Huynen, M.A.: Orthology prediction at scalable resolution by phylogenetic tree analysis. — BMC Bioinformatics 8: 83, 2007.
Vences, F.J., Vaquero, E., Perez de la Vega, M.: Phylogenetic relationships in Secale (Poaceae): an isozymatic study. — PIant Syst. Evol. 157: 33–47, 1987.
Wang, J.P., Raman, H., Zhou, M.X., Ryan, P.R., Delhaize, E., Hebb, D.M., Coombes, N., Mendham, N.: High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). — Theor. appl. Genet. 115: 265–276, 2007.
Yamaji, N., Huang, C.F., Nagao, S., Yano, M., Sato, Y., Nagamura, Y., Ma, J.F.: A zinc finger transcription factor art1 regulates multiple genes implicated in aluminum tolerance in rice. — Plant Cell 21: 3339–3349, 2009.
Yokosho, K., Yamaji, N., Fujii-Kashino, M., Ma, J.F.: Functional analysis of a MATE gene OsFRDL 2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice. — Plant Cell Physiol. 57: 976–985, 2016.
Yokosho, K., Yamaji, N., Ma, J.F.: An Al-inducible MATE gene is involved in external detoxification of Al in rice. — Plant J. 68: 1061–1069, 2011.
Yokosho, K., Yamaji, N., Ma, J.F.: Isolation and characterisation of two MATE genes in rye. — Funct. Plant Biol. 37: 296–303, 2010.
Zhou, J., Yang, Z., Li, G., Liu, C., Tang, Z., Zhang, Y., Ren, Z.: Diversified chromosomal distribution of tandemly repeated sequences revealed evolutionary trends in Secale (Poaceae). — Plant Syst. Evol. 287: 49–57, 2010.
Author information
Authors and Affiliations
Corresponding author
Additional information
Acknowledgements: This work was supported by research grants AGL 2008-03049/AGR from the Ministerio de Educación y Ciencia de España, PR34/07-1581 from the Santander/Complutense, Acción Integrada España-Portugal (PT2009-0096 y E-171/10) and a PHD grant from the Fundação para a Ciência e Tecnologia de Portugal (SFRH/ BD/ 65040/ 2009). J. Silva-Navas was a recipient of the Contratos de Personal Investigador de Apoyo (Comunidad de Madrid).
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Santos, E., Benito, C., Silva-Navas, J. et al. Characterization, genetic diversity, phylogenetic relationships, and expression of the aluminum tolerance MATE1 gene in Secale species. Biol Plant 62, 109–120 (2018). https://doi.org/10.1007/s10535-017-0749-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10535-017-0749-0