Biologia Plantarum

, Volume 62, Issue 1, pp 149–156 | Cite as

Comparison of nitrogen uptake in the roots and rhizomes of Leymus chinensis

  • S. Li
  • F. Jiang
  • Y. Han
  • P. Gao
  • H. Zhao
  • Y. Wang
  • S. Han
Original papers


Leymus chinensis (Trin.) Tzvel is a rhizomatous grass species in the Eastern Eurasian steppe zone that is often limited by low soil nitrogen availability. Although a previous study showed that the rhizomes of L. chinensis have the capacity to take up nitrogen, the importance of such uptake for nitrogen nutrition is unclear. Moreover, little is known regarding the inorganic nitrogen uptake kinetics of roots and rhizomes in response to nitrogen status. Here, we first found that ammonium is preferred over nitrate and glycine for L. chinensis growth. Using the 15N-labelling method, we found that the rate of ion influx into roots was approximately five-fold higher than into rhizomes under the same nitrogen content, and the ion influxes into roots and rhizomes under 0.05 mM N were greater than in the presence of 3 mM N, especially in the form of NH4+. Using a non-invasive micro-test technique, we characterised the patterns of NH4+ and NO3 fluxes in the root mature zone, root tip, rhizome mature zone, and rhizome tip following incubation in the solution with different N compounds and different N concentrations. These results suggest a dynamic balance between the uptake, utilisation, and excretion of nitrogen in L. chinensis.

Additional key words

ion fluxes HATS LATS 15N-labelling non-invasive micro-test 



ammonium transport proteins


high-affinity transport system


low-affinity transport system


non-invasive micro-test


nitrogen-use efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2017_748_MOESM1_ESM.pdf (237 kb)
Supplementary material, approximately 237 KB.


  1. Britto, D.T., Kronzucker, H.J.: NH4 + toxicity in higher plants: a critical review. — J. Plant Physiol. 159: 567–584, 2002.CrossRefGoogle Scholar
  2. Brooker, R.W., Callaghan, T.V., Jonasson, S.: Nitrogen uptake by rhizomes of the clonal sedge Carex bigelowii: a previously overlooked nutritional benefit of rhizomatous growth. — New Phytol. 142: 35–48, 1999.CrossRefGoogle Scholar
  3. Cabrera, E., Gonzalez-Montelongo, R., Giraldez, T., De la Rosa, D.A., Siverio, J.M.: Molecular components of nitrate and nitrite efflux in yeast. — Eukaryot. Cell 13: 267–278, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen, G., Guo, S., Kronzucker, H.J., Shi, W.: Nitrogen use efficiency (NUE) in rice links to NH4 + toxicity and futile NH4 + cycling in roots. — Plant Soil 369: 351–363, 2013a.CrossRefGoogle Scholar
  5. Chen, S., Huang, X., Yan, X., Liang, Y., Wang, Y., Li, X., Peng, X., Ma, X., Zhang, L., Cai, Y., Ma, T., Cheng, L., Qi, D., Zheng, H., Yang, X., Li, X., Liu, G.: Transcriptome analysis in sheepgrass (Leymus chinensis): a dominant perennial grass of the eurasian steppe. — PLoS ONE 8: e67974, 2013b.CrossRefGoogle Scholar
  6. Crawford, N.M., Glass, A.D.M.: Molecular and physiological aspects of nitrate uptake in plants. — Trends Plant Sci. 3: 1360–1385, 1998.Google Scholar
  7. Elashry, A., Okumoto, S., Siddique, S., Koch, W., Kreil, D.P., Bohlmann, H.: The AAP gene family for amino acid permeases contributes to development of the cyst nematode Heterodera schachtii in roots of Arabidopsis. — Plant Physiol. Biochem. 70: 379–386, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fang, Y.Y., Babourina, O., Rengel, Z., Yang, X.E., Pu, P.M.: Spatial distribution of ammonium and nitrate fluxes along roots of wetland plants. — Plant Sci. 173: 240–246, 2007.CrossRefGoogle Scholar
  9. Gao, Y., Wang, D., Ba, L., Bai, Y., Liu, B.: Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis. — Environ. exp. Bot. 63: 113–122, 2008.CrossRefGoogle Scholar
  10. Han, M., Okamoto, M., Beatty, P.H., Rothstein, S.J., Good, A.G.: The genetics of nitrogen use efficiency in crop plants. — Annu. Rev. Genet. 49: 269–289, 2015.CrossRefPubMedGoogle Scholar
  11. Henriksen, G.H., Raman, D.R., Walker, L.P., Spanswick, R.M.: Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes: II. patterns of uptake along the root axis and evaluation of the microelectrode flux estimation technique. — Plant Physiol. 99: 734–747, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ho, C.H., Lin, S.H., Hu, H.C., Tsay, Y.F.: CHL1 functions as a nitrate sensor in plants. — Cell 138: 1184–1194, 2009.CrossRefPubMedGoogle Scholar
  13. Ju, X.-T., Xing, G.-X., Chen, X.-P., Zhang, S.-L., Zhang, L.-J., Liu, X.-J., Cui, Z.-L., Yin, B., Christie, P., Zhu, Z.-L., Zhang, F.-S.: Reducing environmental risk by improving N management in intensive Chinese agricultural systems. — Proc. nat. Acad. Sci. USA 106: 3041–3046, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kang, L., Han, X., Zhang, Z., Sun, O.J.: Grassland ecosystems in China: review of current knowledge and research advancement. — Phil. Trans. roy. Soc. London B Biol. Sci. 362: 997–1008, 2007.CrossRefGoogle Scholar
  15. Kiba, T., Feria-Bourrellier, A.B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Brehaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H., Krapp, A.: The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-straved plants. — Plant Cell 24: 245–258, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kingston-Smith, A.H., Bollard, A.L., Minchin, F.R.: The effect of nitrogen status on the regulation of plant-mediated proteolysis in ingested forage; an assessment using nonnodulating white clover. — Ann. appl. Biol. 149: 35–42, 2006.CrossRefGoogle Scholar
  17. Krapp, A., David, L.C., Chardin, C., Girin, T., Marmagne, A., Leprince, A.-S., Chaillou, S., Ferrario-Méry, S., Meyer, C., Daniel-Vedele, F.: Nitrate transport and signalling in Arabidopsis. — J. exp. Bot. 65: 789–798, 2014.CrossRefPubMedGoogle Scholar
  18. Kronzucker, H.J., Siddiqi, M.Y., Glass, A.D.M.: Conifer root discrimination against soil nitrate and the ecology of forest succession. — Nature 385: 59–61, 1997.CrossRefGoogle Scholar
  19. Lee, Y.H., Foster, J., Chen, J., Voll, L.M., Weber, A.P., Tegeder, M.: AAP1 transports uncharged amino acids into roots of Arabidopsis. — Plant J. 50: 305–319, 2007.CrossRefPubMedGoogle Scholar
  20. Li, Q., Li, B.H., Kronzucker, H.J., Shi, W.M.: Root growth inhibition by NH4 + in Arabidopsis is mediated by the root tip and is linked to NH4 + efflux and GMPase activity. — Plant Cell Environ. 33: 1529–1542, 2010.CrossRefPubMedGoogle Scholar
  21. Liu, H., Liu, H., Song, Y.: Absorption and translocation of nitrogen in rhizomes of Leymus chinensis. — Rapid Commun. Mass Spectrometry 25: 665–671, 2011.CrossRefGoogle Scholar
  22. Liu, K.H., Tsay, Y.F.: Switching between the two action modes ofthe dual-affinity nitrate transporter CHL1 by phosphorylation. — EMBO J. 22: 1005–1013, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J.W., Goulding, K., Christie, P., Fangmeier, A., Zhang, F.: Enhanced nitrogen deposition over China. — Nature 494: 459–462, 2013.CrossRefPubMedGoogle Scholar
  24. Loqueé, D., Von Wireé, N.: Regulatory levels for the transport of ammonium in plant roots. — J. exp. Bot. 55: 1293–1305, 2004.CrossRefGoogle Scholar
  25. Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., Suzuki, A.: Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. — Ann. Bot. 105: 1141–1157, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Meng, S., Zhang, C., Su, L., Li, Y., Zhao, Z.: Nitrogen uptake and metabolism of Populus simonii in response to PEGinduced drought stress. — Environ. exp. Bot. 123: 78–87, 2016.CrossRefGoogle Scholar
  27. Mengel, K., Hütsch, B., Kane, Y.: Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen. — Eur. J. Agr. 24: 343–348, 2006.CrossRefGoogle Scholar
  28. Miller, A.J., Fan, X., Orsel, M., Smith, S.J., Wells, D.M.: Nitrate transport and signalling. — J. exp. Bot. 58: 2297–2306, 2007.CrossRefPubMedGoogle Scholar
  29. Näsholm, T., Ekblad, A., Nordin, A., Giesler, R., Högberg, M., Högberg, P.: Boreal forest plants take up organic nitrogen. — Nature 392: 914–916, 1998.CrossRefGoogle Scholar
  30. Nakamura, M., Nakamura, T., Tsuchiya, T.: Advantages of NH4 + on growth, nitrogen uptake and root respiration of Phragmites australis. — Plant Soil 331: 463–470, 2010.CrossRefGoogle Scholar
  31. Persson, J., Gardestrom, P., Nasholm, T.: Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. — J. exp. Bot. 57: 2651–2659, 2006.CrossRefPubMedGoogle Scholar
  32. Plassard, C., Guerin-Laguette, A., Very, A.A., Casarin, V., Thibaud, J.B.: Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis. — Plant Cell Environ. 25: 75–84, 2002.CrossRefGoogle Scholar
  33. Rentsch, D., Schmidt, S., Tegeder, M.: Transporters for uptake and allocation of organic nitrogen compounds in plants. — FEBS Lett. 581: 2281–2289, 2007.CrossRefPubMedGoogle Scholar
  34. Schulten, H.R., Schnitzer, M.: The chemistry of soil organic nitrogen: a review. — Biol. Fertil. Soils 26: 1–15, 1997.CrossRefGoogle Scholar
  35. Sohlenkamp, C., Shelden, M., Howitt, S., Udvardi, M.: Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. — FEBS Lett. 467: 273–278, 2000.CrossRefPubMedGoogle Scholar
  36. Sun, J., Chen, S., Dai, S., Wang, R., Li, N., Shen, X., Zhou, X., Lu, C., Zheng, X., Hu, Z., Zhang, Z., Song, J., Xu, Y.: NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. — Plant Physiol. 149: 1141–1153, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sun, Y., Wang, F., Wang, N., Dong, Y., Liu, Q., Zhao, L., Chen, H., Liu, W., Yin, H., Zhang, X., Yuan, Y., Li, H.: Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing. — PLoS ONE 8: e53632, 2013.CrossRefGoogle Scholar
  38. Svennerstam, H., Ganeteg, U., Näsholm, T.: Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. — New Phytol. 180: 620–630, 2008.CrossRefPubMedGoogle Scholar
  39. Taylor, A.R., Bloom, A.J.: Ammonium, nitrate, and proton fluxes along the maize root. — Plant Cell Environ. 21: 1255–1263, 1998.CrossRefGoogle Scholar
  40. Walch-Liu, P., Neumann, G., Engels, C.: Response of shoot and root growth to supply of different nitrogen forms is not related to carbohydrate and nitrogen status of tobacco plants. — J. Plant Nutr. Soil Sci. 164: 97–103, 2001.CrossRefGoogle Scholar
  41. Wipf, D., Ludewig, U., Tegeder, M., Rentsch, D., Koch, W., Frommer, W.B.: Conservation of amino acid transporters in fungi, plants and animals. — Trends Biochem. Sci. 27: 139–147, 2002.CrossRefPubMedGoogle Scholar
  42. Yuan, L., Loque, D., Kojima, S., Rauch, S., Ishiyama, K., Inoue, E., Takahashi, H., Von Wiren, N.: The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. — Plant Cell 19: 2636–2652, 2007.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • S. Li
    • 1
  • F. Jiang
    • 1
  • Y. Han
    • 1
  • P. Gao
    • 1
  • H. Zhao
    • 1
  • Y. Wang
    • 1
  • S. Han
    • 1
  1. 1.Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life SciencesBeijing Normal UniversityBeijingP.R. China

Personalised recommendations