Biologia Plantarum

, Volume 62, Issue 1, pp 194–199 | Cite as

Photoperiod and ethylene-dependent expression of gibberellin biosynthesis gene InEKO1 during flower induction of Ipomoea nil

  • K. Marciniak
  • E. Wilmowicz
  • A. Kućko
  • J. Kopcewicz
Brief Communication


Ent-kaurene oxidase (EKO) catalyze three sequential oxidations in the early steps of gibberellin biosynthesis pathway. In this research, a cDNA sequence of InEKO1 gene in the model short-day plant Ipomoea nil was identified. Our studies revealed that inductive conditions for flowering caused an increase in the transcriptional activity of the examined gene in the cotyledons–the main organs for the perception of the photoperiodic stimulus. In contrast, in the second half of the 16 h long inductive night and after that, a decreased amount of InEKO1 mRNA in the apexes was detected. What is more, ethylene, the key inhibitor of flower induction in I. nil, elevated the InEKO1 expression exclusively in the cotyledons between 10 and 14 h of the inductive night.

Additional key words

ent-kaurene oxidase flowering phytohormones short-day plant 



ent-kaurene oxidase






long day


short day


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2017_743_MOESM1_ESM.pdf (4.6 mb)
Supplementary material, approximately 4752 KB.


  1. Achard, P., Baghour, M., Chapple, A., Hedden, P., Van der Straeten, D., Genschik, P., Moritz, T., Harberd, N.P.: The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. — PNAS 104: 6484–6489, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Achard, P., Vriezen, W.H., Van der Straeten, D., Harberd, N.: Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. — Plant Cell 15: 2816–2825, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., Weigel, D.: Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. — Plant Cell 10: 791–800, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Calvo, A.P., Nicolas, C., Nicolas, G., Rodriguez, D. Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. — Physiol. Plant 120: 623–630, 2004.CrossRefPubMedGoogle Scholar
  5. Cheng, H., Qin, L., Lee, S., Fu, X., Richards, D.E., Cao, D., Luo, D., Harberd, N.P., Peng, J.: Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. — Development 131: 1055–1064, 2004.CrossRefPubMedGoogle Scholar
  6. Gabriele, S., Rizza, A., Martone, J., Circelli, P., Costantino, P., Vittorioso, P.: The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. — Plant J. 61: 312–323, 2010.CrossRefPubMedGoogle Scholar
  7. Galvao, V.C., Horrer, D., Kuttner, F., Schmid M.: Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. — Development 139: 4072–4082, 2012.CrossRefPubMedGoogle Scholar
  8. Glazińska, P., Wojciechowski, W., Wilmowicz, E., Zienkiewicz, A., Frankowski, K., Kopcewicz, J.: The involvement of InMIR167 in the regulation of expression of its target gene InARF8, and their participation in the vegetative and generative development of Ipomoea nil plants. — J. Plant Physiol. 171: 225–234, 2014.CrossRefPubMedGoogle Scholar
  9. Hayama, R., Agashe, B., Luley, E., King, R., Coupland, G.: A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. — Plant Cell 19: 2988–3000, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hayama, R., Coupland, G.: The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. — Plant Physiol. 135: 677–684, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Helliwell, C.A., Olive, M.R., Gebbie, L., Forster, R., Peacock, W.J., Dennis, E.S.: Isolation of an ent-kaurene oxidase cDNA from Cucurbita maxima. — Aust. J. Plant Physiol. 27: 1141–1149, 2000.Google Scholar
  12. Helliwell, C.A., Sheldon, C.C., Olive, M.R., Walker, A.R., Zeevaart, J.A.D., Peacock, W.J., Dennis, E.S.: Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. — PNAS 95: 9019–9024, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kalb, V.F., Loper, J.C.: Proteins from eight eukaryotic cytochrome P-450 families share a segmented region of sequence similarity. — PNAS 85: 7221–7225, 1988.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kęsy, J., Maciejewska, B., Sowa, M., Szumilak, M., Kawałowski, K., Borzuchowska, M., Kopcewicz, J.: Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. — Plant Growth Regul. 55: 43–50, 2008.CrossRefGoogle Scholar
  15. Kim, D.H., Yamaguchi, S., Lim, S., Oh, E., Park, J., Hanada, A., Kamiya, Y., Choi, G.: SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates lightdependent seed germination downstream of PIL5. — Plant Cell 20: 1260–1277, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  16. King, RW., Moritz, T., Evans, L.T., Martin, J., Andersen, C.H., Blundell, C., Kardailsky, I., Chandler, P.M.: Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. — Plant Physiol. 141: 498–507, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ko, K.W., Lin, F., Katsumata, T., Sugai, Y., Miyazaki, S., Kawaide, H., Okada, K., Nojiri, H., Yamane, H.: Functional identification of a rice ent-kaurene oxidase, OsKO2, using the Pichia pastoris expression system. — Biosci. Biotech. Biochem. 72: 3285–3288, 2008.CrossRefGoogle Scholar
  18. Lee, D.J., Zeevaart, J.A.D.: Regulation of gibberellin 20-oxidase1 expression in spinach by photoperiod. — Planta 226: 35–44, 2007.CrossRefPubMedGoogle Scholar
  19. Li, J., Tian, Y., Wang, C., Tian, W., Song, W., Yin, H.: Cloning and bioinformatics analysis of ent-kaurene oxidase gene PpKO in pear (Pyrus pyrifolia Nakai). — Acta hort. sin. 37: 1575–1582, 2010.Google Scholar
  20. Liu, K., Feng. S., Jiang, Y., Li, H., Huang, S., Liu, J., Yuan, C.: Identification and expression analysis of seven MADS-box genes from Annona squamosa. — Biol. Plant. 61: 24–34, 2017.CrossRefGoogle Scholar
  21. Marciniak, K., Grzegorzewska, W., Kęsy, J., Szmidt-Jaworska, A., Tretyn, A., Kopcewicz, J.: Regulation of gibberellins metabolism in plants. — Kosmos 61: 213–232, 2012a.Google Scholar
  22. Marciniak, K., Kęsy, J., Tretyn, A., Kopcewicz, J.: Gibberellins - structure, biosynthesis and deactivation in plants. — Post. Biochem. 58: 14–25, 2012b.Google Scholar
  23. Mignolli, F., Rojas, G.B., Vidoz, M.L.: Supraoptimal ethylene acts antagonistically with exogenous gibberellins during Solanum lycopersicum (Solanaceae) hypocotyl growth. — Bol. Soc. Argent. Bot. 51: 235–242, 2016.Google Scholar
  24. Mitrović, A., Živanović, B., Ćulafić, L.: Effect of darkness on growth and flowering of Chenopodium rubrum and C. murale plants in vitro. — Biol. Plant. 46: 471–474, 2003.CrossRefGoogle Scholar
  25. Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., Lee, I.: The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. — Plant J. 35: 613–623, 2003.CrossRefPubMedGoogle Scholar
  26. Morrone, D., Chen, X., Coates, R.M., Peters, R.J.: Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis. — Biochem. J. 431: 337–344, 2010.CrossRefPubMedGoogle Scholar
  27. Mutasa-Göttgens, E., Hedden, P.: Gibberellin as a factor in floral regulatory networks. — J. exp. Bot. 60: 1979–1989, 2009.CrossRefPubMedGoogle Scholar
  28. Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., Enju, A., Shinozaki, K.: Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. — Plant mol. Biol. 55: 327–342, 2004.CrossRefPubMedGoogle Scholar
  29. Ogawa, Y., King, R.W.: The inhibition of flowering by noninduced cotyledons of Pharbitis nil. — Plant Cell Physiol. 31: 129–135, 1990.Google Scholar
  30. Ogawara, T., Higashi, K., Kamada, H., Ezura, H.: Ethylene advances the transition from vegetative growth to flowering in Arabidopsis thaliana. — J. Plant Physiol. 160: 1335–1340, 2003.CrossRefPubMedGoogle Scholar
  31. Porri, A., Torti, S., Romera-Branchat, M., Coupland, G.: Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. — Development 139: 2198–2209, 2012.CrossRefPubMedGoogle Scholar
  32. Raab, M., Koning, R: Interacting roles of gibberellin and ethylene in corolla expansion of Ipomoea nil (Convolvulaceae). — Amer. J. Bot. 74: 921–927, 1987.CrossRefGoogle Scholar
  33. Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka, H., Iwahori, S., Matsuoka, M.: Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. — Plant Physiol. 125: 1508–1516, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Villa-Ruano, N., Betancourt-Jimenez, M.G., Lozoya-Gloria, E.: cDNA isolation and gene expression of kaurene oxidase from Montanoa tomentosa (zoapatle). — Rev. Latinoam. Quim. 38: 21–28, 2010.Google Scholar
  35. Wilmowicz, E., Frankowski, K., Glazińska P., Kesy, J., Wojciechowski, W., Kopcewicz, J.: Cross talk between phytohormones in the regulation of flower induction in Pharbitis nil. — Biol. Plant. 55: 757–760, 2011.CrossRefGoogle Scholar
  36. Wilmowicz, E., Kućko, A., Frankowski, K., Świdziński, M., Marciniak, K., Kopcewicz, J.: Methyl jasmonate-dependent senescence of cotyledons in Ipomoea nil. — Acta Physiol. Plant. 38: 222, 2016.CrossRefGoogle Scholar
  37. Wilson, R.N., Heckman, J.W., Somerville, C.R.: Gibberellin is required for flowering in Arabidopsis thaliana under short days. — Plant Physiol. 100: 403–408, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wu, K., Li, L., Gage, D.A., Zeevaart, J.A.: Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. — Plant Physiol. 110: 547–554, 1996.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Xu, Y.L., Gage, D.A., Zeevaart, J.A.: Gibberellins and stem growth in Arabidopsis thaliana. Effects of photoperiod on expression of the GA4 and GA5 loci. — Plant Physiol. 114: 1471–1476, 1997.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yamaguchi, S.: Gibberellin metabolism and its regulation. — Annu. Rev. Plant Biol. 59: 225–251, 2008.CrossRefPubMedGoogle Scholar
  41. Yamaguchi, S., Sun, T.-P., Kawaide, H., Kamiya, Y.: The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. — Plant Physiol. 116: 1271–1278, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zeevaart, J.A.D., Gage, D.A.: Ent-kaurene biosynthesis is enhanced by long photoperiods in the long-day plants Spinacia oleracea L. and Agrostemma githago L. — Plant Physiol. 101: 25–29, 1993.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • K. Marciniak
    • 1
    • 2
  • E. Wilmowicz
    • 1
    • 2
  • A. Kućko
    • 1
  • J. Kopcewicz
    • 1
  1. 1.Chair of Plant Physiology and BiotechnologyNicolaus Copernicus UniversityToruńPoland
  2. 2.Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland

Personalised recommendations