Biologia Plantarum

, Volume 62, Issue 1, pp 129–139 | Cite as

Tolerance to soil water stress by Oryza sativa cv. IR20 was improved by expression of Wsi18 gene locus from Oryza nivara

  • R. Kaur
  • A. Chakraborty
  • R. K. Bhunia
  • S. K. Sen
  • A. K. Ghosh
Original papers


Wild rice genotypes are rich in genetic diversity. This has potential to improve agronomic rice by allele mining for superior traits. Late embryogenesis abundant (LEA) proteins are often associated with desiccation tolerance and stress signalling. In the present study, a group 3 LEA gene, Wsi18 from the wild rice Oryza nivara was expressed under its own inducible promoter element in stress susceptible cultivated indica rice (cv. IR20). The resulting transgenic plants cultivated in a greenhouse showed enhanced tolerance to soil water deficit. Transgenic plants had higher grain yield, plant survival rate, and shoot relative water content compared to wild type (WT) IR20. Cell membrane stability index, proline and soluble sugar content were also greater in transgenic than WT plants under water stress. These results demonstrate the potential for improving SWS tolerance in agronomically important rice cultivar by incorporating Wsi18 gene from a wild rice O. nivara.

Additional key words

inducible expression electrolyte leakage LEA proteins proline relative water content transgenic plants 



cell membrane stability


quantitative polymerase chain reaction


relative electrolyte leakage


relative water content


soil water content


soil water stress


wild type


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2017_742_MOESM1_ESM.pdf (956 kb)
Supplementary material, approximately 957 KB.


  1. Ashraf, M.: Inducing drought tolerance in plants: recent advances. — Biotechnol. Adv. 28: 169–183, 2010.CrossRefPubMedGoogle Scholar
  2. Babu, R.C., Zhang, J., Blum, A., Davidho, T.H., Wu, R., Nguyen, H.: HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. — Plant Sci. 166: 855–862, 2004.CrossRefGoogle Scholar
  3. Bajji, M., Kinet, J., Lutts, S.: The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. — Plant Growth Regul. 36: 61–70, 2002.CrossRefGoogle Scholar
  4. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  5. Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., Covarrubias, A.A.: The enigmatic LEA proteins and other hydrophilins. — Plant Physiol. 148: 6–24, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhatnagar-Mathur, P., Vadez, V., Sharma, K.K.: Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. — Plant Cell Rep. 27: 411–424, 2008.CrossRefPubMedGoogle Scholar
  7. Bhattacharyya, J., Chowdhury, A.H., Ray, S., Jha, J.K., Das, S., Gayen, S., Chakraborty, A., Mitra, J., Maiti, M.K., Basu, A., Sen, S.K.: Native polyubiquitin promoter of rice provides increased constitutive expression in stable transgenic rice plants. — Plant Cell Rep. 31: 271–279, 2012.CrossRefPubMedGoogle Scholar
  8. Bhunia, R.K., Chakraborty, A., Kaur, R., Gayatri, T., Bhattacharyya, J., Basu, A., Maiti, M.K., Sen, S.K.: Seedspecific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. — Plant mol. Biol. 86: 351–365, 2014.CrossRefPubMedGoogle Scholar
  9. Bhunia, R.K., Chakraborty, A., Kaur, R., Maiti, M.K., Sen, S.K.: Enhancement of α-linolenic acid content in transgenic tobacco seeds by targeting a plastidial ω-3 fatty acid desaturase (fad7) gene of Sesamum indicum to ER. — Plant Cell Rep. 35: 213–226, 2016.CrossRefPubMedGoogle Scholar
  10. Black C.A. (ed): Methods of Soil Analysis: Part 1, Physical and Mineralogical Properties. - American Society of Agronomy, Madison 1965.Google Scholar
  11. Checker, V.G., Chhibbar, A.K., Khurana, P.: Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. — Transgenic Res. 21: 939–957, 2012.CrossRefPubMedGoogle Scholar
  12. Chen, Y.S., Lo, S.F., Sun, P.K., Lu, C.A., Ho, T.H.D., Yu, S.M.: A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. — Plant Biotechnol. J. 13: 105–116, 2015.CrossRefPubMedGoogle Scholar
  13. Dansana, P.K., Kothari, K.S., Vij, S., Tyagi, A.K.: OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. — Plant Cell Rep. 33: 1425–1440, 2014.CrossRefPubMedGoogle Scholar
  14. DeBuck, S., Van Montagu, M., Depicker, A.: Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. — Plant mol. Biol. 46: 433–445, 2001.CrossRefGoogle Scholar
  15. DeBuck, S., Windels, P., De-Loose, M., Depicker, A.: Singlecopy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable betaglucuronidase accumulation levels. — Cell. Mol. Life Sci. 61: 2632–2645, 2004.CrossRefGoogle Scholar
  16. Degenkolbe, T., Do, P.T., Zuther, E., Repsilber, D., Walther, D., Hincha, D.K., Kohl, K.I.: Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. — Plant mol. Biol. 69: 133–153, 2009.CrossRefPubMedGoogle Scholar
  17. Duan, J., Cai, W.: OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. — PLoS ONE 7: e45117, 2012.CrossRefGoogle Scholar
  18. Gao, J., Lan, T.: Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. — Sci. Rep. 6: 19467, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gao, Y., Jiang, W., Dai, Y., Xiao, N., Zhang, C., Li, H., Lu, Y., Wu, M., Tao, X., Deng, D., Chen, J.: A maize phytochromeinteracting factor 3 improves drought and salt stress tolerance in rice. — Plant mol. Biol. 87: 413–428, 2015.CrossRefPubMedGoogle Scholar
  20. Gaudin, A.C.M., Henry, A., Sparks, A.H., Slamet-Loedin, I.H.: Taking transgenic rice drought screening to the field. — J. exp. Bot. 64: 109–117, 2012.CrossRefPubMedGoogle Scholar
  21. He, R.F.: Construction of a genomic library of Oryza officinalis and transformation of large DNA fragments. - PhD Thesis, Wuhan University, Wuhan 2003.Google Scholar
  22. Hundertmark, M., Hincha, D.K.: LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. — BMC Genomics 9: 118, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hincha, D.K., Thalhammer, A.: LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. — Biochem. Soc. Trans. 40: 1000–1003, 2012.CrossRefPubMedGoogle Scholar
  24. Jeng, T. L., Tseng, T. H., Wang, C. S., Chen, C. L., Sung, J. M.: Yield and grain uniformity in contrasting rice genotypes suitable for different growth environments. — Field Crops Res. 99: 59–66, 2006.CrossRefGoogle Scholar
  25. Joo, J., Lee, Y.H., Song, S.I.: Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA. — Plant Biotechnol. Rep. 8: 431–441, 2014.CrossRefGoogle Scholar
  26. Joshee, N., Kisaka, H., Kitagawa, Y.: Isolation and characterization of a water stress-specific genomic gene, pwsi 18, from rice. — Plant Cell Physiol. 39: 64–72, 1998.CrossRefPubMedGoogle Scholar
  27. Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. — Plant Cell Physiol. 45: 346–350, 2004.CrossRefPubMedGoogle Scholar
  28. Kaur, R., Bhunia, R.K., Ghosh, A.K.: Molecular genetic approaches for environmental stress tolerant crop plants: progress and prospects. — Recent Patents Biotechnol. 10: 12–29, 2016.CrossRefGoogle Scholar
  29. Kaur, R., Chakraborty, A., Bhunia, R.K., Bhattacharyya, J., Basu, A., Sen, S.K., Ghosh, A.K.: Wsi18 promoter from wild rice genotype, Oryza nivara, shows enhanced expression under soil water stress in contrast to elite cultivar, IR20. — J. Plant Biochem. Biotech. 26: 14–26, 2017.CrossRefGoogle Scholar
  30. Khurana, P., Vishnudasan, D., Chhibbar, A.K.: Genetic approaches towards overcoming water deficit in plantsspecial emphasis on LEAs. — Physiol. mol. Biol. Plants 14: 277–298, 2008.CrossRefPubMedGoogle Scholar
  31. Kumar, G.R., Sakthivel, K., Sundaram, R.M., Neeraja, C.N., Balachandran, S.M., Rani, N.S., Viraktamath, B.C., Madhav, M.S.: Allele mining in crops: prospects and potentials. — Biotechnol. Adv. 28: 451–61, 2010.CrossRefPubMedGoogle Scholar
  32. Lal, S., Gulyani, V., Khurana, P.: Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). — Transgenic Res. 17: 651–663, 2008.CrossRefPubMedGoogle Scholar
  33. Leung, H., Raghavan, C., Zhou, B., Oliva, R., Choi, R., Lacorte, V., Jubay, M.L., Cruz, C.V., Gregorio, G., Singh, R.K., Ulat, V.J., Borja, F.N., Mauleon, R., Alexandrov, N.N., McNally, K.L., Hamilton, R.S.: Allele mining and enhanced genetic recombination for rice breeding. — Rice 8: 34, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liang, X., Zhang, L., Natarajan, S.K., Becker, D.F.: Proline mechanisms of stress survival. — Antioxid. Redox. Signal. 19: 998–1011, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. — Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  36. Lu, B-R., Yang, C.: Gene flow from genetically modified rice to its wild relatives: assessing potential ecological consequences. — Biotechnol. Adv. 27: 1083–91, 2009.CrossRefPubMedGoogle Scholar
  37. Maclean, J.L., Hardy, B., Hettel, G.P. (ed): Rice Almanac: Source Book for One of the Most Important Economic Activity on Earth. 4th Ed. - International Rice Research Institute, Los Banos 2013.Google Scholar
  38. Mickelbart, M.V., Hasegawa, P.M., Bailey-Serres, J.: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. — Nat. Rev. Genet. 16: 237–251, 2015.CrossRefPubMedGoogle Scholar
  39. Mittler, R., Blumwald, E.: Genetic engineering for modern agriculture: challenges and perspectives. — Annu. Rev. Plant Biol. 61: 443–462, 2010.CrossRefPubMedGoogle Scholar
  40. Moons, A., Keyser, A.D., Montagu, M.V.: A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. — Gene 191: 197–204, 1997.CrossRefPubMedGoogle Scholar
  41. Nakashima, K., Jan, A., Todaka, D., Maruyama, K., Goto, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Comparative functional analysis of six drought-responsive promoters in transgenic rice. — Planta 239: 47–60, 2014.CrossRefPubMedGoogle Scholar
  42. Ogbaga, C.C., Stepien, P., Johnson, G.N.: Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. — Physiol. Plant. 152: 389–401, 2014.CrossRefPubMedGoogle Scholar
  43. Potenza, C., Aleman, L., Sengupta-Gopalan, C.: Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. — In Vitro cell. dev. Biol. Plant. 40: 1–22, 2004.CrossRefGoogle Scholar
  44. Placido, D.F., Campbell, M.T., Folsom, J.J., Cui, X., Kruger, G.R., Baenziger, P.S., Walia, H.: Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. — Plant Physiol. 161: 1806–19, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rohila, J.S., Jain, R.K., Wu, R.: Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. — Plant Sci. 163: 525–532, 2002.CrossRefGoogle Scholar
  46. Sanchez, P.L., Wing, R.A., Brar, D.S.: The wild relative of rice: genomes and genomics the genus Oryza: broadening the gene pool species into rice. - In: Zhang, Q., Wing, R.A. (ed.): Genetics and Genomics of Rice. Vol. 5. Pp. 9–25. Springer, New York 2014.Google Scholar
  47. Singh, B.P., Jayaswal, P.K., Singh, B., Singh, P.K., Kumar, V., Mishra, S., Singh, N., Panda, K., Singh, N.K.: Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance. — Plant Cell Rep. 34: 993–1004, 2015.CrossRefPubMedGoogle Scholar
  48. Takahashi, R., Joshee, N., Kitagawa, Y.: Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. — Plant mol. Biol., 26: 339–52, 1994.CrossRefPubMedGoogle Scholar
  49. Tompa, P.: Intrinsically disordered proteins: a 10-year recap. — Trends Biochem. Sci. 37: 509–516, 2012.CrossRefPubMedGoogle Scholar
  50. Tripathi, R., Boschetti, C., McGee, B., Tunnacliffe, A.: Trafficking of bdelloid rotifer late embryogenesis abundant proteins. — J. exp. Biol. 215: 2786–2794, 2012.CrossRefPubMedGoogle Scholar
  51. Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., Yano, M.: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. — Nat. Genet. 45: 1097–1102, 2013.CrossRefPubMedGoogle Scholar
  52. Wang, J., Oard, J.H.: Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. — Plant Cell Rep. 22: 129–134, 2003.CrossRefPubMedGoogle Scholar
  53. Wang, M., Li, P., Li, C., Pan, Y., Jiang, X., Zhu, D., Zhao, Q., Yu, J.: SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. — BMC Plant Biol. 14: 290–305, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang, X.S., Zhu, H.B., Jin, G.L., Liu, H.L., Wu, W.R., Zhu, J.: Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). — Plant Sci. 172: 414–420, 2007.CrossRefGoogle Scholar
  55. Xiao, B., Huang, Y., Tang, N., Xiong, L.: Over-expression of a LEA gene in rice improves drought resistance under the field conditions. — Theor. appl. Genet. 115: 35–46, 2007.CrossRefPubMedGoogle Scholar
  56. Xiao, F.H., Xue, G.P.: Analysis of the promoter activity of late embryogenesis abundant protein genes in barley seedlings under conditions of water deficit. — Plant Cell Rep. 20: 667–673, 2001.CrossRefGoogle Scholar
  57. Yi, N., Oh, S.J., Kim, Y.S., Jang, H.J., Park, S.H., Jeong, J.S., Song, S.I., Choi, Y.D., Kim, J.K.: Analysis of the Wsi18, a stress-inducible promoter that is active in the whole grain of transgenic rice. — Transgenic Res. 20: 153–63, 2011.CrossRefPubMedGoogle Scholar
  58. Yu, J.N., Zhang, J.S., Shan, L., Chen, S.Y.: Two new group 3 LEA genes of wheat and their functional analysis in yeast. — J. Integr. Plant Biol. 47: 1372–1381, 2005.CrossRefGoogle Scholar
  59. Zhang, Z., Huang, R.: Analysis of malondialdehyde, chlorophyll, proline, soluble sugar, glutathione content in seedling. — Bio-protocol 3: e817, 2013.Google Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • R. Kaur
    • 1
  • A. Chakraborty
    • 1
  • R. K. Bhunia
    • 1
  • S. K. Sen
    • 1
  • A. K. Ghosh
    • 2
  1. 1.Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development CentreIndian Institute of Technology-KharagpurKharagpurIndia
  2. 2.Department of BiotechnologyIndian Institute of Technology-KharagpurKharagpurIndia

Personalised recommendations