Skip to main content
Log in

Picea asperata pioneer and fibrous roots have different physiological mechanisms in response to soil freeze-thaw in spring

  • Original paper
  • Published:
Biologia Plantarum

Abstract

About 70 % of the total land area in the world are affected by soil freeze and thaw (FT) cycles. Root is the first organ of plant to sense soil environment and it is unclear how it copes with the soil FT. Based on the different functions of firstorder pioneer and fibrous roots in woody plants, we hypothesize that pioneer and fibrous roots respond differently. The experiment was conducted in a growth chamber using Picea asperata seedlings. We designed the FT based on field observation data. The physiological responses in fibrous and pioneer roots were examined. Fibrous roots had higher root vitality and N content, whereas pioneer roots exhibited higher total nonstructural saccharide content. The accumulation of O2 - under FT treatment was similar in the two types of roots. Pioneer roots showed higher osmolyte (especially proline) content, whereas fibrous roots had higher peroxidase activity. The present study confirmed that fibrous roots have stronger metabolism ability, whereas pioneer roots are the key storage organs. FT in the temperature range from -5 to 5 °C are mild and do not cause serious injury to roots. Pioneer roots have higher tolerance to soil FT in spring than fibrous roots. The roots have different strategies to FT: fibrous roots increase the antioxidant system, whereas pioneer roots accumulate more osmolytes. Such knowledge can help us to understand how roots of woody plants cope with soil FT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

absorbance

ASA:

ascorbic acid

EDTA:

ethylenediamine tetraacetic acid

FT:

freeze-thaw

MDA:

malondialdehyde

O2 - :

superoxide radical

PCA:

principal component analysis

POD:

peroxidase

REL:

relative electrolyte leakage

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TNC:

total nonstructural saccharides

TTC:

triphenyltetrazolium chloride.

References

  • Acosta-Motos, J.R., Álvarez, S., Barba-Espín, G., Hernández, J.A., Sánchez-Blanco, M.J.: Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. — Plant Physiol. Biochem. 85: 41–50, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M., Ben Adullah, F.: Saline water irrigation effects on antioxidant defense system and proline accumulation in leaves and roots of field-grown olive. — J. Agr. Food Chem. 57: 11484–11490, 2009.

    Article  CAS  Google Scholar 

  • Bigras, F.J., Ryyppö, A., Lindström, A., Stattin, E.: Cold acclimation and deacclimation of shoots and roots of conifer seedlings. — In: Bigras, F.J., Colombo, S.J. (ed.): Conifer Cold Hardiness. Pp. 57–88. Kluwer Academic Publishers, Dordrecht 2001.

    Chapter  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, J.L., Socci, A.M., Templer, P.H.: Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest. — Global Change Biol. 20: 2663–2673, 2014.

    Article  Google Scholar 

  • Cleavitt, N.L., Fahey, T.J., Groffman, P.M.: Effects of soil freezing on fine roots in a northern hadwood forest. — Can. J. Forest Res. 38: 82–91, 2008.

    Article  Google Scholar 

  • Colombo, S.J., Zhao, S.Y., Blumwald, E.: Frost hardiness gradients in shoots and roots of Picea-mariana seedlings. — Scand. J. Forest Res. 10: 32–36, 1995.

    Article  Google Scholar 

  • Costa, H., Gallego, S.M., Tomaro, M.L.: Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. — Plant Sci. 162: 939–945, 2002

    Article  CAS  Google Scholar 

  • Couee, I., Sulmon, C., Gouesbet, G., El Amrani, A.: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. — J. exp. Bot. 57: 449–459, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O.: Climate extremes: observations, modeling, and impacts. — Science 289: 2068–2074, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Gaul, D., Hertel, D., Leuschner, C.: Effects of experimental soil frost on the fine-root system of mature Norway spruce. — J. Plant Nutr. Soil Sci. 171: 690–698, 2008.

    Article  CAS  Google Scholar 

  • Gorsuch, D.E., Oberbauer, S.F.: Effects of mid-season frost and elevated growing season temperature on stomatal conductance and specific xylem conductivity of the arctic shurb, Salix pulchra. — Tree Physiol. 22: 1027–1034, 2002.

    Article  PubMed  Google Scholar 

  • Groffman, P.M., Driscoll, C.T., Fahey, T.J., Hardy, J.P., Fitzhugh, R.D., Tierney, G.L.: Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. — Biogeochemistry 56: 135–150, 2001.

    Article  CAS  Google Scholar 

  • Guo, D., Mitchell, R.J., Hendricks, J.J.: Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. — Oecologia 140: 450–457, 2004.

    Article  PubMed  Google Scholar 

  • Halliwell, B., Gutteridge, J.: Free Radicals in Biology and Medicine. 2nd Ed. — Oxford University Press, Oxford - New York 1989.

    Google Scholar 

  • Hansen, J., Moller, I.: Percolation of starch and soluble carbohydrate from plant-tissue for quantitative-determination with anthrone. — Anal. Biochem. 68: 87–94, 1975.

    Article  CAS  PubMed  Google Scholar 

  • Havis, J.R.: Root hardiness of woody ornamentals. — HortScience 11: 385–386, 1976.

    Google Scholar 

  • Hennon, P.E., D’Amore, D.V., Wittwer, D., Caouette, J.: Yellowcedar decline: conserving a climate-sensitive tree species as Alaska warms. — In: Deal, R. L. (ed.): Integrated Restoration of Forested Ecosystems to Achieve Multiresource Benefits. Pp. 233–245. USDA Forest Service, Pacific Northwest Research Station, Portland 2008.

    Google Scholar 

  • Henry, H.A.L.: Climate change and soil freezing dynamics: historical trends and projected changes. — Climatic Change 87: 421–434, 2008.

    Article  CAS  Google Scholar 

  • Hodges, D.M., Andrews, C.J., Johnson, D.A., Hamilton, R.I.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. — Physiol. Plant. 98: 685–692, 1996.

    Article  CAS  Google Scholar 

  • Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. — Planta 207: 604–611, 1999.

    Article  CAS  Google Scholar 

  • Horsley, S.B., Wilson, B.F.: Development of woody portion of root system of Betula papyrifera. — Amer. J. Bot. 58: 141–147, 1971.

    Article  Google Scholar 

  • Jiang, J., Su, M., Chen, Y., Gao, N., Jiao, C., Sun, Z., Li, F., Wang, C.: Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. — Biologia 68: 231–240, 2013.

    Article  CAS  Google Scholar 

  • Joseph, G., Henry, H.A.: Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field. — Soil Biol. Biochem. 40: 1947–1953, 2008.

    Article  CAS  Google Scholar 

  • Kim, T.H., Lee, B.R., Jung, W.J., Kim, K.Y., Avice, J.C., Ourry, A.: De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. — Funct. Plant Biol. 31: 847–855, 2004.

    Article  CAS  Google Scholar 

  • Kimball, J., McDonald, K., Zhao, M.: Spring thaw and its effect on terrestrial vegetation productivity in the western Arctic observed from satellite microwave and optical remote sensing. — Earth Interact. 10: 1–22, 2006.

    Article  Google Scholar 

  • Kohler, J., Hernández, J.A., Caravaca, F., Roldán, A.: Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. — Environ. exp. Bot. 65: 245–252, 2009.

    Article  CAS  Google Scholar 

  • Kreyling, J.: Winter climate change: a critical factor for temperate vegetation performance. — Ecology 91: 1939–1948, 2010.

    Article  PubMed  Google Scholar 

  • Kreyling, J., Beierkuhnlein, C., Jentsch, A.: Effects of soil freezethaw cycles differ between experimental plant communities. — Basic appl. Ecol. 11: 65–75, 2010.

    Article  Google Scholar 

  • Kreyling, J., Peršoh, D., Werner, S., Benzenberg, M., Wollecke, J.: Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of Holcus lanatus and Calluna vulgaris. — Plant Soil 353: 19–31, 2012.

    Article  CAS  Google Scholar 

  • Larsen, K.S., Jonasson, S., Michelsen, A.: Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. — Appl. Soil Ecol. 21: 187–195, 2002.

    Article  Google Scholar 

  • Li, H., Sun, Q., Zhao, S., Zhang, W.: Principles and Techniques of Plant Physiological and Biochemical Experiments. — Higher Education Press, Beijing 2000.

    Google Scholar 

  • Lyford, W.H.: Development of the Root System of Northern Red Oak (Quercus rubra L.). — Harvard University, Petersham 1980.

    Google Scholar 

  • Malyshev, A.V., Henry, H.A.L.: Frost damage and winter nitrogen uptake by the grass Poa pratensis L.: consequences for vegetative versus reproductive growth. — Plant Ecol. 213: 1739–1747, 2012.

    Article  Google Scholar 

  • Martin, U., Pallardy, S.G., Bahari, Z.A.: Dehydration tolerance of leaf tissues of 6 woody angiosperm species. — Physiol. Plant. 69: 182–186, 1987.

    Article  Google Scholar 

  • Mellander, P.E., Lofvenius, M.O., Laudon, H.: Climate change impact on snow and soil temperature in boreal Scots pine stands. — Climatic Change 85: 179–193, 2007.

    Article  CAS  Google Scholar 

  • Noctor, G., Foyer, C.: Ascorbate and Glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Polverigiani, S., McCormack, M.L., Mueller, C.W., Eissenstat, D.M.: Growth and physiology of olive pioneer and fibrous roots exposed to soil moisture deficits. — Tree Physiol. 31: 1228–1237, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Pregitzer, K.S., DeForest, J.L., Burton, A.J., Allen, M.F., Ruess, R.W., Hendrick, R.L.: Fine root architecture of nine North American trees. — Ecol. Monogr. 72: 293–309, 2002.

    Article  Google Scholar 

  • Prochazkova, D., Sairam, R.K., Srivastava, G.C., Singh, D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. — Plant Sci. 161: 765–771, 2001.

    Article  CAS  Google Scholar 

  • Radic, S., Stefanic, P.P., Lepedus, H., Roje, V., Pevalek-Kozlina, B.: Salt tolerance of Centaurea ragusina L. is associated with efficient osmotic adjustment and increased antioxidative capacity. — Environ. exp. Bot. 87: 39–48, 2013.

    Article  CAS  Google Scholar 

  • Repo, T., Seija, S., Heinonen, J., Lavigné, A., Roitto, M., Koljonen, E., Sutinen, S., Finér, L.: Effects of frozen soil on growth and longevity of fine roots of Norway spruce. — Forest Ecol. Manage. 313: 112–122, 2014.

    Article  Google Scholar 

  • Ruf, M., Brunner, I.: Vitality of tree fine roots: reevaluation of the tetrazolium test. — Tree Physiol. 23: 257–263, 2003.

    Article  PubMed  Google Scholar 

  • Sairam, R.K., Deshmukh, P.S., Shukla, D.S.: Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. — J. Agr. Crop Sci. 178: 171–177, 1997.

    Article  CAS  Google Scholar 

  • Sardans, J., Penuelas, J., Estiarte, M.: Seasonal patterns of rootsurface phosphatase activities in a Mediterranean shrubland. Responses to experimental warming and drought. — Biol. Fert. Soils 43: 779–786, 2007.

    Article  Google Scholar 

  • Schaberg, P.G., Hennon, P.E., D'Amore, D.V., Hawley, G.J.: Influence of simulated snow cover on the cold tolerance and freezing injury of yellow-cedar seedlings. — Global Change Biol. 14: 1282–1293, 2008.

    Article  Google Scholar 

  • Schuerings, J., Jentsch, A., Walter, J., Kreyling, J.: Winter warming pulses differently affect plant performance in temperate heathland and grassland communities. — Ecol. Res. 29: 561–570, 2014.

    Article  Google Scholar 

  • Sjursen, H.S., Michelsen, A., Holmstrup, M.: Effects of freezethaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. — Appl. Soil Ecol. 28: 79–93, 2005.

    Article  Google Scholar 

  • Smith, N.V., Saatchi, S.S., Randerson, J.T.: Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. — J. Geophys. Res. (1984-2012) 109(D12), 2004.

    Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L.: (ed.): Climate Change 2007: the Physical Science Basis. — Cambridge University Press, Cambridge - New York 2007.

    Google Scholar 

  • Sutinen, M.L., Palta, J.P., Reich, P.B.: Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa evaluation of the electrolyte leakage method. — Tree Physiol. 11: 241–254, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Tan, B., Wu, F., Yang, W., Yu, S., Liu, L., Wang, A.: The dynamics pattern of soil carbon and nutrients as soil thawing proceeded in the alpine/subalpine forest. — Acta agr. scand. 61: 670–679, 2011.

    Google Scholar 

  • Tierney, G.L., Fahey, T.J., Groffman, P.M., Hardy, J.P., Fitzhugh, R.D., Driscoll, C.T.: Soil freezing alters fine root dynamics in a northern hardwood forest. — Biogeochemistry 56: 175–190, 2001.

    Article  CAS  Google Scholar 

  • Waisel, Y., Eshel, A.: Functional diversity of various constituents of a single root system. — In: Waisel, Y., Eshel, A., Kafkafi, U. (ed.): Plant Roots: The Hidden Half. 3rd Ed. Pp. 157–174, Marcel Dekker, New York 2002.

    Chapter  Google Scholar 

  • Xia, M., Guo, D., Pregitzer, K.S.: Ephemeral root modules in Fraxinus mandshurica. — New Phytol. 188: 1065–1074, 2010.

    Article  PubMed  Google Scholar 

  • Xu, H., Lu, Y., Tong, S., Song, F.: Lipid peroxidation, antioxidant enzyme activity and osmotic adjustment changes in husk leaves of maize in black soils region of Northeast China. — Afr. J. agr. Res. 6: 3098–3102, 2011.

    Google Scholar 

  • Yin, C., Pu, X., Xiao, Q., Zhao, C., Liu, Q.: Effects of night warming on spruce root aroud non-growing season vary with branch order and month. — Plant Soil 380: 249–263, 2014.

    Article  CAS  Google Scholar 

  • Zadworny, M., Eissenstat, D.M.: Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots. — New Phytol. 190: 213–221, 2011.

    Article  PubMed  Google Scholar 

  • Zhang, M., Hu, C., Zhao, X., Tan, Q., Sun, X., Cao, A., Cui, M., Zhang, Y.: Molybdenum improves antioxidant and osmoticadjustment ability against salt stress in Chinese cabbage (Brassica campestris L. ssp. pekinensis). — Plant Soil 355: 375–383, 2012.

    Article  CAS  Google Scholar 

  • Zhang, T., Barry, R.G., Knowles, K., Ling, F., Armstrong, R.L.: Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. — In: Phillips, M., Springman, S.M., Arenson, L.U. (ed.) Permafrost. Pp. 1289–1294, A.A. Balkema, Zurich 2003.

    Google Scholar 

  • Zhu, J., He, X., Wu, F., Yang, W., Tan, B.: Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China. — Scand. J. Forest Res. 27: 586–596, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Yin or X. Pang.

Additional information

Acknowledgements: This research was supported by the National Natural Science Foundation of China (Nos. 31370495 and 31070533). The authors thank Xiang Wang from Mississippi State University, USA, for language improving. The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Xiao, Q., Sun, Y. et al. Picea asperata pioneer and fibrous roots have different physiological mechanisms in response to soil freeze-thaw in spring. Biol Plant 61, 709–716 (2017). https://doi.org/10.1007/s10535-017-0728-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0728-5

Additional key words

Navigation