Skip to main content

Advertisement

Log in

Utilization of urea by leaves of bromeliad Vriesea gigantea under water deficit: much more than a nitrogen source

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Vriesea gigantea Gaudichaud is an epiphytic bromeliad with a high capacity to take up urea. In plants, urea is hydrolyzed by urease into ammonium and CO2, providing nitrogen to the plant. Most studies of urea nutrition have focused only on nitrogen metabolism, whereas scarce attention has been given to CO2 assimilation. Therefore, this study attempted to investigate whether urea could play an important role as a carbon source, which could be of a significant importance under water deficit conditions because of the limitation in atmospheric CO2 influx into the leaves due to stomatal closure. In this study, detached leaves of V. gigantea were exposed to water deficit and supplied with urea. The most photosynthetic parts of the leaf (mainly the apical leaf portion) showed higher urease activities and CO2 buildup near chloroplasts, particularly during the nighttime under water deficit conditions when compared to urea application without the water deficit. Moreover, part of the CO2 generated from urea hydrolysis was fixed into malate, probably via phosphoenolpyruvate carboxylase. Therefore, urea may contribute to the carbon balance of plants under water deficit conditions. Our data suggest that, besides being a source of nitrogen, urea might also be an important carbon source during CO2-limited conditions in leaves of epiphytic bromeliads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

crassulacean acid metabolism

PEG 6000:

polyethylene glycol 6000

PEPC:

phosphoenolpyruvate carboxylase

PPFD:

photosynthetic photon flux density

RWC:

relative water content

References

  • Alexandersson, E., Fraysse, L., Sjövall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., Johanson, U., Kjellbom, P.: Whole gene family expression and drought stress regulation of aquaporins. — Plant. mol. Biol. 59: 469–84, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Amtmann, A., Blatt, M.R.: Regulation of macronutrient transport. — New. Phytol. 181: 35–52, 2008.

    Article  Google Scholar 

  • Aubry, S., Brown, N.J., Hibberd, J.M.: The role of proteins in C3 plants prior to their recruitment into the C4 pathway. — J. exp. Bot. 62: 3049–3059, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. — Aust. J. biol. Sci. 15: 413–428, 1962.

    Article  Google Scholar 

  • Benzing, D.H. (ed.): Vascular Epiphytes: General Biology and Related Biota. — Cambridge Press, Cambridge 1990.

    Book  Google Scholar 

  • Benzing, D.H. (ed.): Bromeliaceae: Profile of Anadaptative Radiation. — Cambridge Press, Cambridge 2000.

    Book  Google Scholar 

  • Benzing, D.H., Henderson, K., Kessel, B., Sulak, J.: The absorptive capacities of bromeliad trichomes. — Amer. J. Bot. 63: 1009–1014, 1976.

    Article  Google Scholar 

  • Borland, A.M., Técsi, L.I., Leegood, R.C., Walker, R.P.: Inducibility of crassulacean acid metabolism (CAM) in Clusia species; physiological/biochemical characterization and intercellular localization of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM. — Planta 205: 342–351, 1998.

    Article  CAS  Google Scholar 

  • Borland, A.M., Zambrano, V.A.B., Ceusters. J., Shorrock, K.: The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. — New Phytol. 191: 619–633, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Cambui, C.A., Gaspar, M., Mercier, H.: Detection of urease in the cell wall and membranes from leaf tissues of bromeliad species. — Physiol. Plant. 136: 86–93, 2009.

    Article  CAS  Google Scholar 

  • Cambui, C.A., Svennerstam, H., Gruffman, L., Nordin, A., Ganeteg, U., Näsholm, T.: Patterns of plant biomass partitioning depend on nitrogen source. — PLoS ONE 6: e19211, 2011.

    Article  Google Scholar 

  • Cao, F.Q., Werner, A.K., Dahncke, K., Romeis, T., Liu, L.H., Witte, C.P.: Identification and characterization of proteins involved in rice urea and arginine catabolism. — Plant. Physiol. 154: 98–108, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cape, J.N., Cornell, S.E., Jickells, T.D., Nemitz, E.: Organic nitrogen in the atmosphere ? Where does it come from? A review of sources and methods. — Atmos. Res. 102: 30–48, 2011.

    Article  CAS  Google Scholar 

  • Chapin, F.S.,III., Moilainen, L., Kielland, K.: Preferential use of organic nitrogen by a non-micorrhizal arctic sedge. — Nature 361: 150–153, 1993.

    Article  CAS  Google Scholar 

  • Cornic, G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis. — Trends. Plant. Sci. 5: 187–188, 2000.

    Article  Google Scholar 

  • Cornic, G., Fresnau, C.: Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. — Ann. Bot. 89: 887–894, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowling, S.A.: Did early land plants use carbon concentrating mechanisms? — Trends Plant. Sci. 18: 120–124, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Cushman, J.C., Borland, A.M.: Induction of crassulacean acid metabolism by water limitation. — Plant Cell Environ. 24: 31–40, 2002.

    Google Scholar 

  • Doubnerová, V., Ryslavá, H.: What can enzymes of C4 photosynthesis do for C3 plants under stress?. — Plant Sci. 180: 575–583, 2011.

    Article  PubMed  Google Scholar 

  • Endres, L., Mercier, H.: Influence of nitrogen forms on the growth and nitrogen metabolism of bromeliads. — J. Plant. Nutr. 24: 29–42, 2001.

    Article  CAS  Google Scholar 

  • Follmer, C.: Insights into the role and structure of plant ureases. — Phytochemistry 69: 18–28, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Freschi, L., Takahashi, C.A., Cambuí, C.A., Semprebom, T.R., Cruz, A.B., Mioto, P.T., De Melo, L.V., Calvente, A., Latansio-Aidar S.R., Aidar, M.P., Mercier, H.: Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage. — J. Plant Physiol. 167: 526–533, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Freschi, L., Mercier, H.: Connecting environmental stimuli and crassulacean acid metabolism expression: phytohormones and other signaling molecules. — In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (ed.): Progress in Botany. Vol. 73. Pp 231–255. Springer-Verlag, Berlin - Heidelberg 2012.

    CAS  Google Scholar 

  • Gaspar, M., Bousser, A., Sissoëff, I., Roche, O., Hoarau, J., Mahe, A.: Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. — Plant Sci. 165: 21–31, 2003.

    Article  CAS  Google Scholar 

  • Gerendás, J., Sattelmacher, B. Significance of Ni supply for growth, urease activity and the concentrations of urea, amino acids and mineral nutrients of urea grow plants. — Plant Soil 190: 153–162, 1999.

    Article  Google Scholar 

  • Gonzalez, M.C., Sanchez, R., Cejudo, F.J.: Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. — Planta 216: 985–992, 2003.

    CAS  PubMed  Google Scholar 

  • Gruffman, L., Jämtgård, S., Näsholm, T.: Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. — Tree Physiol. 34: 205–213, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Hogan, M.E., Swift, I.E., Done, J.: Urease assay and ammonia release from leaf tissues. — Phytochemistry 22: 663–667, 1983.

    Article  CAS  Google Scholar 

  • Hýsková, V., Miedzínska, L., Dobrá, J., Vankova, R., Ryšlavá, H.: Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. — J. Plant Physiol. 171: 19–25, 2014.

    Article  Google Scholar 

  • Inselsbacher, E., Cambui, C.A., Richter, A., Stange, C.F., Mercier, H., Wanek, W.: Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. — New Phytol. 175: 311–320, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jämtgård, S., Näsholm, T., Huss-Danell, K.: Characteristics of amino acid uptake in barley. — Plant Soil 302: 221–231, 2008.

    Article  Google Scholar 

  • Kielland, K.: Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. — Ecology 75: 2373–2383, 1994.

    Article  Google Scholar 

  • Kjellbom, P., Larsson, C., Johansson, I., Karlsson, M., Johanson, U.: Aquaporins and water homeostasis in plants. — Trends. Plant Sci. 4: 308–314, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Knudson, L.: A new nutrient solution for germination for orchid seed. — Amer. Orchid Soc. Bull. 15: 214–217, 1946.

    CAS  Google Scholar 

  • Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Leroy, C., Carrias, J.F., Corbara, B., Pélozuelo, L., Dézerald, O., Brouard, O., Dejean, A., Céréghino, R.: Mutualistic ants contribute to tank-bromeliad nutrition. — Ann. Bot. 112: 919–926, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian, H.L., Xin, Y., Qin, Y., Ding, X.S., Kitagawa, Y., Kwak, S.S., Su, W.A., Tang, Z.C.: The role of aquaporin RWC3 in drought avoidance in rice. — Plant Cell Physiol. 45: 481–489, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lipson, D., Näsholm, T.: The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. — Oecologia 128: 305–316, 2001.

    Article  PubMed  Google Scholar 

  • Liu, L.H., Ludewig, U., Gassert, B., Frommer, W.B., Von Wirén, N.: Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. — Plant Physiol. 133: 1220–1228, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez, L.C.S., Rodrigues, P.J.F.P., Rios, R.I.: Frogs and snakes as phoretic dispersal agents of bromeliad ostracods (Limnocytheridae: Elpidium) and annelids (Naididae: Dero). — Biotropica 31: 705–708, 1999.

    Article  Google Scholar 

  • Matiz, A., Mioto, P.T., Mayorga, A.Y., Freschi, L., Mercier, H.: CAM photosynthesis in bromeliads and agaves: what can we learn from these plants?. — In: Dubinsky, Z. (ed.): Photosynthesis. Vol. 1. Pp. 91–134. Intech, Rijeka 2013.

    Google Scholar 

  • Maxwell, K.: Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. — Funct. Plant Biol. 29: 679–687, 2002.

    Article  CAS  Google Scholar 

  • Maxwell, C., Griffiths, H., Borland, A.M., Young, A.J., Broadmeadow, M.S.J., Fordham, M.C.: Short-term photosynthetic responses of the C3-CAM epiphyte Guzmania monostachia var. monostachia to tropical seasonal transitions under field conditions. — Aust. J. Plant Physiol. 22: 771–781, 1995.

    Article  CAS  Google Scholar 

  • McCullough, H.: The determination of ammonia in whole blood by a direct colorimetric method. — Clin. chim. Acta 17: 297–304, 1967.

    Article  CAS  PubMed  Google Scholar 

  • Medina, E., Ziegler, H., Lüttge, U., Trimborn, P., Francisco, M.: Light conditions during growth as revealed by δ13C values of leaves of primitive cultivars of Ananas comosus, an obligate CAM species. — Funct. Ecol. 8: 298–305, 1994.

    Article  Google Scholar 

  • Mercier, H., Kerbauy, G.B., Sotta, B., Miginiac, E. Effects of NO3 -, NH4 + and urea nutrition on endogenous levels of IAA and four cytokinins in two epiphytic bromeliads. — Plant Cell Environ. 20: 387–392, 1997.

    Article  CAS  Google Scholar 

  • Mérigout, P., Lelandais, M., Bitton, F., Renou, J.P., Briand, X., Meyer, C., Daniel-Vedele, F.: Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. — Plant Physiol. 147: 1225–1238, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Millanes, A.M., Fontaniella, B., Garcia, M.L., Solas, M.T., Vicente, C., Legaz, M.E.: Cytochemical location of urease in cell wall of two different lichen phycobionts. — Tissue Cell 36: 373–377, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Mioto, P.T., Mercier, H.: Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought. — J. Plant Physiol. 170: 996–1002, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Mioto, P.T., Rodrigues, M.A., Matiz, A., Mercier, H.: CAMlike traits in C3 plants: biochemistry and stomatal behavior. — In: Lüttge, U., Beyschlag, W. (ed.): Progress in Botany. Vol. 76. Pp. 195–209. Springer-Verlag, Berlin - Heidelberg 2015.

    Google Scholar 

  • Moons, A., Valcke, R., Van Montagu, M. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. — Plant J. 15: 89–98, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. — Physiol. Plant. 15: 473–479, 1962.

    Article  CAS  Google Scholar 

  • Näsholm, T., Kielland, K., Ganeteg, U.: Uptake of organic nitrogen by plants. — New Phytol. 182: 31–48, 2009.

    Article  PubMed  Google Scholar 

  • O’Leary, B., Park, J., Plaxton, W.C.: The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and posttranslational controls of non-photosynthetic PEPCs. — Biochem. J. 436: 15–34, 2011.

    Article  PubMed  Google Scholar 

  • Paungfoo-Lonhienne, C., Lonhienne, T.G.A., Rentsch, D., Robinson, N., Christie, M., Webb, R.I., Gamage, H.K., Carroll, B.J., Schenk, P.M., Schmidt, S.: Plants can use protein as a nitrogen source without assistance from other organisms. — Proc. nat. Acad. Sci. USA 105: 4524–4529, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne, C., Visser, J., Lonhienne, T.G.A., Schmidt, S.: Past, present and future of organic nutrients. — Plant Soil 359: 1–18, 2012.

    Article  CAS  Google Scholar 

  • Persson, J., Näsholm, T.: Amino acid uptake: a widespread ability among boreal forest plants. — Ecol. Lett. 4: 434–438, 2001.

    Article  Google Scholar 

  • Popp, M., Janett, H.P., Lüttge, U., Medina, E.: Metabolite gradients and carbohydrate translocation in rosette leaves of CAM and C3 bromeliads. — New Phytol. 157: 649–656, 2003.

    Article  CAS  Google Scholar 

  • Rademacher, T., Haüsler, R.E., Heinz, J.H., Zhang, L., Lipka, V., Weier, D., Kreuzaler, F., Peterhänsel, C.: An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. — Plant J. 32: 25–39, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, M.A., Hamachi, L., Mioto., P.T., Purgatto, E., Mercier, H.: Implications of leaf ontogeny on droughtinduced gradients of CAM expression and ABA levels in rosettes of the epiphytic tank bromeliad Guzmania monostachia. — Plant Physiol. Biochem. 108: 400–411, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Romero, G.Q., Mazzafera, P., Vasconcellos-Neto, J., Trivelin, P.C.O.: Bromeliad-living spiders improve host plant nutrition and growth. — Ecology 87: 803–808, 2006.

    Article  PubMed  Google Scholar 

  • Romero, G.Q., Nomura, F., Gonçalves, A.Z., Dias, N.Y.N., Mercier, H., Conforto, E.C., Rossa-Feres, D.C.: Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach. — Oecologia 162: 941–949, 2010.

    Article  PubMed  Google Scholar 

  • Romero, G.Q., Vasconcellos-Neto, J., Trivelin, P.C.O. Spatial variation in the strength of mutualism between a jumping spider and a terrestrial bromeliad: evidence from the stable isotope 15N. — Acta oecol. 33: 380–386, 2008.

    Article  Google Scholar 

  • Schimel, J.P., Chapin, F.S. III.: Tundra plant uptake of amino acid and NH4 + nitrogen in situ: plants compete well for amino acid N. — Ecology 77: 2141–2147, 1996.

    Google Scholar 

  • Svennerstam, H., Jämtgård, S., Ahmad, I., Huss-Danell, K., Näsholm, T., Kielland, K., Ganeteg, U. Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. — New Phytol. 191: 459–467, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, C.A., Ceccantini, G.C.T., Mercier, H.: Differential capacity of nitrogen assimilation between apical and basal leaf portions of a tank epiphytic bromeliad. — Braz. J. Plant Physiol. 19: 119–126, 2007.

    Article  CAS  Google Scholar 

  • Takahashi, C.A., Mercier, H.: Nitrogen metabolism in leaves of a tank epiphytic bromeliad: characterization of a spatial and functional division. — J. Plant Physiol. 168: 1208–1216, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Vera-Estrella, R., Barkla, B.J., Amezcua-Romero, J.C., Pantoja, O.: Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum. — Plant Cell Environ. 35: 485–501, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W.H., Köhler, B., Cao, F.Q., Liu, L.H.: Molecular and physiological aspects of urea transport in higher plants. — Plant Sci. 175: 467–477, 2008.

    Article  CAS  Google Scholar 

  • Weatherburn, M.W.: Phenol-hypochlorite reaction for determination of ammonia. — Anal. Chem. 39: 971–974, 1967.

    Article  CAS  Google Scholar 

  • Wilkinson, S., Davies, W.J.: ABA-based chemical signalling: the co-ordination of responses to stress in plants. — Plant Cell Environ. 25: 195–210, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Winter, K., Garcia, M., Holtum, J.A.M.: On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. — J. exp. Bot. 59: 1829–1840, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Witte, C.P., Tiller, S.A., Taylor, M.A., Davies, H.V.: Leaf urea metabolism in potato urease activity profile and patterns of recovery and distribution of 15N after foliar urea application in wild-type and urease-antisense transgenics. — Plant Physiol. 128: 1129–1136, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte, C.P.: Urea metabolism in plants. — Plant Sci. 180: 431–438, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Zambelli, B., Musiani, F., Benini, S., Ciurli, S.: Chemistry of Ni2+ in urease: Sensing, trafficking, and catalysis. — Accounts chem. Res. 44: 520–530, 2011.

    Article  CAS  Google Scholar 

  • Zotz, G., Reichling, P., Valladares, F.: A simulation study on the importance of size- related changes in leaf morphology and physiology for carbon gain in an epiphytic bromeliad. — Ann. Bot. 90: 437–443, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mercier.

Additional information

Acknowledgements: We are grateful to the São Paulo Research Foundation (FAPESP) for the financial funding awarded to Alejandra Matiz (grants: 2013/09097-7) and Helenice Mercier (grant: 2011/50637-0) and to the National Counsel of Technological and Scientific Development (CNPq) for grant 306431/2010-6.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matiz, A., Mioto, P.T., Aidar, M.P.M. et al. Utilization of urea by leaves of bromeliad Vriesea gigantea under water deficit: much more than a nitrogen source. Biol Plant 61, 751–762 (2017). https://doi.org/10.1007/s10535-017-0721-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0721-z

Additional key words

Navigation