Skip to main content
Log in

Foliar-application of α-tocopherol enhanced salt tolerance of Carex leucochlora

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Several different concentrations of α-tocopherol were applied to Carex leucochlora after plants had been treated with high salinity (0.8 % NaCl) in a greenhouse for one month. The results revealed that 0.8 mM α-tocopherol treatment showed the greatest alleviation of growth inhibition and cell membrane damage induced by salt stress. In comparison with NaCl alone, the 0.8 mM α-tocopherol application significantly decreased the content of hydrogen peroxide and the rate of superoxide radical generation, and increased the content of chlorophyll b, carotenoids, free proline, and soluble protein, but had no effect on the content of chlorophyll a and soluble sugar. These results suggest that α-tocopherol could effectively protect C. leucochlora plants from salt stress damage presumably by quenching the excessive reactive oxygen species to protect the photosynthetic pigments and by enhancing the osmotic adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoids

Chl:

chlorophyll

MDA:

malondialdehyde

O2 •− :

superoxide radical

PPFD:

photosynthetic photon flux density

PS II:

photosystem II

ROS:

reactive oxygen species

TBA:

thiobarbituric acid

TCA:

tricarboxylic acid

References

  • Abbasi, A.R., Hajirezaei, M., Hofius, D., Sonnewald, U., Voll, L.M.: Specific roles of α-and γ-tocopherol in abiotic stress responses of transgenic tobacco. — Plant Physiol. 143: 1720–1738, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abd El-Samad, H.M., Shaddad, M.A.K., Barakat, N.: Improvement of plants salt tolerance by oxygenous application of amino acids. — J. med. Plant Res. 5: 569–5699, 2011.

    Google Scholar 

  • Alig, R.J., Kline, J.D., Lichtenstein, M.: Urbanization on the US landscape: looking ahead in the 21st century. — Landscape Urban Planning 69: 219–234, 2004.

    Article  Google Scholar 

  • Azooz, M.M., Hassanein, A.M., Faheed, F.A.: Riboflavin (vitamin B2) treatments counteract the adverse effects of salinity on growth and some relevant physiological responses of Hibiscus sabdariffa L. seedlings. — Bull. Fac. Sci. Assiut. Univ. 31: 295–303, 2002.

    Google Scholar 

  • Barakat, H.: Interactive effects of salinity and certain vitamin on gene expression and cell division. — Int. J. agr. Biol. 3: 219–225, 2003.

    Google Scholar 

  • Bates, L., Walden, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bosch, S.M.: The role of a-tocopherol in plant stress tolerance. — J. Plant Physiol. 162: 743–748, 1995.

    Article  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • El-Lethy, S.R., Abdelhamid, M.T., Reda, F.: Effect of potassium application on wheat (Triticum aestivum L.) cultivars grown under salinity stress. — World appl. Sci. J. 26: 840–850, 2013.

    CAS  Google Scholar 

  • Elstner, E.F., Heupel, A.: Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. — Anal. Biochem. 70: 616–620, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Espinoza, A., San Martín, A., López-Climent, M., Ruiz-Lara, S., Gómez-Cadenas, A., Casaretto, J.A. Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. - J. Plant physiol. 170: 1285–1294, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological response. — Plant Cell 17: 1866–1875, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts: I. Kinetic and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay, A.: Singlet oxygen production in photosynthesis. — J. exp. Bot. 56: 337–346, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H.K., Wellburn, A.R.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. — Biochem. Soc. Trans. 11: 591–592, 1983.

    Article  CAS  Google Scholar 

  • Liu, X., Chi, H., Yue, M., Zhang, X.F., Li, W.J., Jia, E.P.: The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. — J Plant Growth Regul. 31: 436–447, 2012.

    Article  CAS  Google Scholar 

  • Liu, X., Hua, X., Guo, J., Qi, D., Wang, L., Liu, Z., Jin, S., Chen, S., Liu, G.: Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. — Biotechnol. Lett. 30: 1275–1280, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Munne-Bosch, S.: The role of α-tocopherols in plant stress tolerance. — J. Plant Physiol. 162: 743–748, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Ning, H., Wang, W., Zheng, C., Li, Z., Zhu, C., Zhang, Q.: Genetic diversity analysis of sedges (Carex spp.) in Shandong, China based on inter-simple sequence repeat. — Biochem. Syst. Ecol. 56: 158–164, 2014.

    Article  CAS  Google Scholar 

  • Robyt, J.F., White, B.J.: Biochemical Techniques: Theory and Practice. — Brooks/Cole Publishing Co., Monterey 1987.

    Google Scholar 

  • Semchuk, N.M., Lushchak, V., Falk, J., Krupinska, K., Lushchak, V.I.: Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. — Plant Physiol. Biochem. 47: 384–390, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Semida, W.M., Taha, R.S., Abdelhamid, M.T., Rady, M.M.: Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. — S. Afr. J. Bot. 95: 24–31, 2014

    Article  CAS  Google Scholar 

  • Shi, S., Wang, G., Wang, Y., Zhang, L., Zhang, L.: Protective effect of nitric oxide against oxidative stress under ultraviolet-β radiation. — Nitric Oxide 13: 1–9, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y.L., Dong, Y.J., Tian, X.Y., Kong, J., Bai, X.Y., Xu, L.L., He, Z.L.: Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. — Biol. Plant. 60: 329–342, 2016.

    Article  CAS  Google Scholar 

  • Watanabe, S., Katsumi, K., Yuji, I., Sasaki, S.: Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. — Plant Cell Tissue Organ Cult. 63: 199–206, 2001.

    Article  Google Scholar 

  • Zhang, G.Y., Liu, R.R., Xu, G., Zhang, P., Li, Y., Tang, K.X., Liu, Q.Q.: Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase. — Transgenic Res. 22: 89–99, 2013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Wang.

Additional information

Acknowledgements: We are grateful to Dr. Qian-Quan Sun (University of Wyoming) for critically reading of the manuscript. This study has been supported Fund of Shandong Province Modern Agricultural Technology System Innovation Team (grant No. SDAIT-06-07) and by the Natural Science Foundation of Shandong Province, China (grant No. ZR2011CM048).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y.R., Wang, W.L., Zheng, C.S. et al. Foliar-application of α-tocopherol enhanced salt tolerance of Carex leucochlora . Biol Plant 61, 565–570 (2017). https://doi.org/10.1007/s10535-017-0709-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0709-8

Additional key words

Navigation