Skip to main content
Log in

Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation

  • Original paper
  • Published:
Biologia Plantarum

Abstract

The current research was carried out to reveal the possible impacts of cold plasma on growth and physiology of wheat, as a new approach in plant science. Short and long-term impacts of different types of plasma (nitrogen and helium) with surface power density of 0.4 W cm-2, exposure times (15, 30, 60, and 120 s), and repetitions (1, 2, and 4 times with 24 h intervals) were evaluated. Single-time applied helium or nitrogen derived plasma significantly promoted total root and shoot lengths, in contrast to four times application, and the root system was more sensitive than the shoot one. In addition, seedlings were more sensitive to nitrogen derived plasma, compared with helium. The physiological responses to plasma treatment were analyzed via protein assay and peroxidase or phenylalanine ammonia lyase (PAL) activities measurements. Plasma generated signaling molecules, especially ozone, nitric oxide, and/or UV radiation induced promotions in the peroxidase and PAL activities as well as increase in protein content in leaves, especially when times and/or repetitions increased. Plants were perished by the nitrogen derived plasma at the highest exposure time and number of repetitions. However, the seedlings with inhibited growth not only caught up control one month after, but even the growth rate and biomass accumulation in the shoot and leaves were accelerated. Increased leaf soluble phenol content was recorded in plasma treated seedlings, especially at longer times and more repetitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DBD:

dielectric barrier discharge plasma

PAL:

phenylalanine ammonia lyase

References

  • Alekseev, O., Donovan, K., Limonnik, V. Azizkhan-Clifford, J.: Nonthermal dielectric barrier discharge (DBD) plasma suppresses herpes simplex virus type 1 (HSV-1) replication in corneal epithelium. — Trans. Visual. Sci. Technol. 3: 1–14, 2014.

    Google Scholar 

  • Beaudoin-Eagan, L.D., Thorpe, T.A.: Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. — Plant Physiol. 78: 438–441, 1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamins, R., Scheres, B.: Auxin: the looping star in plant development. — Annu. Rev. Plant Biol. 59: 443–465, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Biles, C.L., Abeles, F.B.: Xylem sap proteins. — Plant Physiol. 96: 597–601, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Bußler, S., Herppich, W.B., Neugart, S., Schreiner, M., Ehlbeck, J., Rohn, S., Schlüter, O.: Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’). — Food Res. Int. 76: 132–141, 2015a.

    Article  Google Scholar 

  • Bußler, S., Steins, V., Ehlbeck, J., Schlüter, O.: Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum ‘Salamanca’. — J. Food Eng. 167: 166–174, 2015b.

    Article  Google Scholar 

  • Chen, H.H., Chen, Y.K., Chang, H.C.: Evaluation of physicochemical properties of plasma treated brown rice. — Food Chem. 135: 74–79, 2012.

    Article  CAS  Google Scholar 

  • Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J.M., Barroso, J.B.: Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. — Plant Sci. 181: 604–611, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde, N., Graziano, M., Lamattina, L.: Nitric oxide plays a central role in determining lateral root development in tomato. — Planta 218: 900–905, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Domingos, P., Prado, A.M., Wong, A., Gehring, C., Feijo, J.A.: Nitric oxide: a multitasked signaling gas in plants. — Mol. Plant. 8: 506–520, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Fan, C., Hu, H., Wang, L., Zhou, Q., Huang, X.: Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation. — Environ. Sci. Pollut. Res. 21: 8792–8800, 2014.

    Article  CAS  Google Scholar 

  • Farooq, M., Siddique, K.H., Schubert, S.: Role of nitric oxide in improving plant resistance against salt stress. — In: Ahmad, P. (ed.): Ecophysiology and Responses of Plants under Salt Stress. Pp. 413–424. Springer, Dordrecht 2013.

    Chapter  Google Scholar 

  • Fernández-Marcos, M., Sanz, L., Lewis, D.R., Muday, G.K., Lorenzo, O.: Nitric oxide causes root apical meristem defects and growth inhibition while reducing PINFORMED 1 (PIN1)-dependent acropetal auxin transport. — Proc. nat. Acad. Sci. USA 108: 18506–18511, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Filatova, I., Azharonok, V., Kadyrov, M., Beljavsky, V., Gvozdov, A., Shik, A., Antonuk, A.: The effect of plasma treatment of seeds of some grains and legumes on their sowing quality and productivity. — Rom. J. Phys. 56: 139–143, 2011.

    Google Scholar 

  • Fridman, A.: Plasma Chemistry. — Cambridge University Press, Cambridge 2008

    Book  Google Scholar 

  • Goldwasser, Y., Hershenhorn, J., Plakhine, D., Kleifeld, Y., Rubin, B.: Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. — Physiol. mol. Plant Pathol. 54: 87–96, 1999.

    Article  CAS  Google Scholar 

  • Groß, F., Durner, J., Gaupels, F.: Nitric oxide, antioxidants and prooxidants in plant defence responses. — Front. Plant Sci. 4: 419, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grzegorzewski, F., Ehlbeck, J., Schlüter, O., Kroh, L.W., Rohn, S.: Treating lamb’s lettuce with a cold plasma–influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. — LWT-Food Sci. Technol. 44: 2285–2289, 2011.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M.A., Da Silva, J.A.T., Fujita, M.: Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. — In: Venkateswarlu, B. (ed.): Crop Stress and Its Management: Perspectives and Strategies. P. 261–315. Springer, Dordrecht 2012.

    Chapter  Google Scholar 

  • Ibrahim, M., Srour, H.: Effect of solar UV radiation on antioxidant enzymes and phenols biosynthesis in lettuce (Lactuca sativa). — Arab. Univ. J. agr. Sci. 23: 101–108, 2015.

    Google Scholar 

  • Jia, X., Ren, L., Chen, Q. J., Li, R., Tang, G.: UV-B-responsive microRNAs in Populus tremula. — J. Plant Physiol. 166: 2046–2057, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Lu, Y., Li, J., Li, L., He, X., Shao, H., Dong, Y.: Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). — Plos ONE 9: e97753, 2014.

    Article  Google Scholar 

  • Kashyap, P., Sehrawat, A., Deswal, R.: Nitric oxide modulates Lycopersicon esculentum C-repeat binding factor 1 (LeCBF1) transcriptionally as well as post-translationally by nitrosylation. — Plant Physiol. Biochem. 96: 115–123, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, R., Singh, S., Agrawal, S.: Response of ultraviolet-B induced antioxidant defense system in a medicinal plant, Acorus calamus. — J. environ. Biol. 31: 907–911, 2010.

    CAS  PubMed  Google Scholar 

  • Labanowska, M., Kurdziel, M., Filek, M.: Changes of paramagnetic species in cereal grains upon short-term ozone action as a marker of oxidative stress tolerance. — J. Plant Physiol. 190: 54–66, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Lamattina, L., Polacco, J.C.: Nitric Oxide in Plant Growth, Development and Stress Physiology. — Springer Science & Business Media, Nuremburg 2007.

    Book  Google Scholar 

  • Li, L., Zhao, J., Tang, X.: Ultraviolet irradiation induced oxidative stress and response of antioxidant system in an intertidal macroalgae Corallina officinalis L. — J. environ. Sci. 22: 716–722, 2010.

    Article  CAS  Google Scholar 

  • Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S., Yuanhua, D.: Effects of cold plasma treatment on seed germination and seedling growth of soybean. — Sci. Rep. 4: 112–116, 2014.

    Google Scholar 

  • Louste, C., Artana, G., Moreau, E., Touchard, G.: Sliding discharge in air at atmospheric pressure: electrical properties. — J. Electrostatics. 63: 615–620, 2005.

    Article  Google Scholar 

  • Martínez-Lüscher, J., Morales, F., Delrot, S., Sánchez-Díaz, M., Gomès, E., Aguirreolea, J., Pascual, I.: Short-and long-term physiological responses of grapevine leaves to UV-B radiation. — Plant Sci. 213: 114–122, 2013.

    Article  PubMed  Google Scholar 

  • Méndez-Bravo, A., Raya-González, J., Herrera-Estrella, L., López-Bucio, J.: Nitric oxide is involved in alkamideinduced lateral root development in Arabidopsis. — Plant Cell Physiol. 51: 1612–1626, 2010.

    Article  PubMed  Google Scholar 

  • Mihai, A., Dobrin, D., Magurenau, M., Popa M.: Positive effect of non-thermal plasma treatment in radish seeds. — Rom. Rep. Phys. 66: 1110–1117, 2014.

    Google Scholar 

  • Mitra, A., Li, Y.F., Klämpfl, T.G., Shimizu, T., Jeon, J., Morfill, G.E., Zimmermann, J.L.: Inactivation of surfaceborne microorganisms and increased germination of seed specimen by cold atmospheric plasma. — Food Bioproces. Technol. 7: 645–653, 2014.

    Article  CAS  Google Scholar 

  • Park, D.P., Davis, K., Gilani, S., Alonzo, C-A., Dobrynin, D., Friedman, G., Fridman, A., Rabinovich, A., Fridman, G.: Reactive nitrogen species produced in water by nonequilibrium plasma increase plant growth rate and nutritional yield. — Curr. appl. Phys. 13: S19–S29, 2013.

    Article  Google Scholar 

  • Santisree, P., Bhatnagar-Mathur, P., Sharma, K.K.: NO to drought — multifunctional role of nitric oxide in plant drought: do we have all the answers?. — Plant Sci. 239: 44–55, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Sera, B., Spatenka, P., Sery, M., Vrchotova, N., Hruskova, I.: Influence of plasma treatment on wheat and oat germination and early growth. — IEEE Trans. Plasma Sci. 38: 2963–2968, 2010.

    Article  Google Scholar 

  • Será, B., Stranák, V., Serý, M., Tichý, M., Spatenka, P.: Germination of Chenopodium album in response to microwave plasma treatment. — Plasma Sci. Technol. 10: 506, 2008.

    Article  Google Scholar 

  • Shi, J., Kong, M.G.: Mechanisms of the α and γ modes in radiofrequency atmospheric glow discharges. — J. appl. Phys. 97: 023306, 2005.

    Article  Google Scholar 

  • Siddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O.: Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. — Protoplasma 248: 503–511, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Stolárik, T., Henselová, M., Martinka, M., Novák, O., Zahoranová, A., Cernák, M.: Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). — Plasma Chem. Plasma Proc. 35: 659–676, 2015.

    Article  Google Scholar 

  • Torsethaugen, G., Pitcher, L.H., Zilinskas, B.A., Pell, E.J.: Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. — Plant Physiol. 114: 529–537, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Loake, G.J,. Chu, C.: Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. — Front. Plant Sci. 4: 314, 2013.

    PubMed  PubMed Central  Google Scholar 

  • Welch, R.M., Graham, R.D.: Breeding for micronutrients in staple food crops from a human nutrition perspective. — J. exp. Bot. 55: 353–364, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z., Chi, L., Bian, S., Xu, K.: Effects of plasma treatment on maize seedling resistance. — J. Maize Sci. 15: 111–113, 2007.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Iranbakhsh.

Additional information

Acknowledgements: Authors would like to thank Mahsid Saberi, Mahdi Ali-Arab, Dorsa Khaksari, Reyhane Moosaie Daryan, Zeinab Jahanbakhsh, Seyede Sepideh Mirmohammad-Hosseini Ooshani, and Maryam Amini for their benevolent collaborations in the research procedure. The corresponding author specially would like to acknowledge the Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranbakhsh, A., Ghoranneviss, M., Oraghi Ardebili, Z. et al. Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation. Biol Plant 61, 702–708 (2017). https://doi.org/10.1007/s10535-016-0699-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0699-y

Additional key words

Navigation