Advertisement

Biologia Plantarum

, Volume 61, Issue 4, pp 726–732 | Cite as

Application of X-ray absorption near edge spectroscopy to the study of the effect of sulphur on selenium uptake and assimilation in wheat seedlings

  • Q. Q. Huang
  • Q. Wang
  • Y. N. Wan
  • Y. Yu
  • R. F. Jiang
  • H. F. LiEmail author
Original paper

Abstract

Selenium (Se) is an essential trace element for humans and animals. A hydroponic experiment was performed to study the effects of sulphur (S) on Se uptake, translocation, and assimilation in wheat (Triticum aestivum L.) seedlings. Sulphur starvation had a positive effect on selenate uptake and the form of Se supplied greatly influenced Se speciation in plants. Compared with the control plants, Se uptake by the S-starved plants was enhanced by 4.81-fold in the selenate treatment, and selenate was readily transported from roots to shoots. By contrast, S starvation had no significant effect on selenite uptake, and selenite taken up by roots was rapidly converted to organic forms and tended to accumulate in roots. X-ray absorption near edge spectroscopy (XANES) analysis showed that organic forms of selenium, including selenocystine, Se-methyl-selenocysteine (MeSeCys), and selenomethionine-Se-oxide, were dominant in the plants exposed to selenite and accounted for approximately 90 % of the total Se. Whereas selenate remained as the dominant species in the roots and shoots exposed to selenate, with little selenate converted to selenite and MeSeCys. Besides, sulphur starvation increased the proportion of inorganic Se species in the selenate-supplied plants, but had no significant effects on Se speciation in plants exposed to selenite. The present study provides important knowledge to understand the associated mechanism of Se uptake and metabolism in plants.

Additional key words

selenate selenite XANES 

Abbreviations

APS

ATP sulphurylase

γ-Glu-MeSeCys

γ-glutamyl-Se-methyl-selenocysteine

MeSeCys

Se-methylselenocysteine

ROS

reactive oxygen species

SeCys2

selenocystine

SeMet

selenomethionine

SeOMet

selenomethionine-Seoxide

XANES

X-ray absorption near edge spectroscopy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bañuelos, G.S., Walse, S.S., Yang, S.I., Pickering, I.J., Fakra, S.C., Marcus, M.A., Freeman, J.L.: Quantification, localization, and speciation of selenium in seeds of canola and two mustard species compared to seed-meals produced by hydraulic press. — Anal Chem. 84: 6024–6030, 2012.CrossRefPubMedGoogle Scholar
  2. Brown, K.M., Arthur, J.R.: Selenium, selenoproteins and human health: a review. — Public Health Nutr. 4: 593–599, 2001.CrossRefPubMedGoogle Scholar
  3. Buchner, P,. Stuiver, C.E.E., Westerman, S., Wirtz, M., Hell, R., Hawkesford, M.J., De Kok, L.J.: Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. — Plant Physiol. 136: 3396–3408, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Carey, A.M., Lombi, E., Donner, E., De Jonge, M.D., Punshon, T., Jackson, B.P., Guerinot, M.L., Price, A.H., Meharg, A.A.: A review of recent developments in the speciation and location of arsenic and selenium in rice grain. — Anal Bioanal. Chem. 402: 3275–3286, 2012.CrossRefPubMedGoogle Scholar
  5. Cartes, P., Jara, A.A., Pinilla, L., Rosas, A., Mora, M.L.: Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. — Ann. appl. Biol. 156: 297–307, 2010.CrossRefGoogle Scholar
  6. Chu, J., Yao, X., Zhang, Z.: Responses of wheat seedlings to exogenous selenium supply under cold stress. — Biol. Trace Element Res. 136: 355–363, 2010.CrossRefGoogle Scholar
  7. Combs, G.F:. Selenium in global food systems. — Brit. J. Nutr. 85: 517–547, 2001.CrossRefPubMedGoogle Scholar
  8. Cubadda, F., Aureli, F., Ciardullo, S., D’Amato, M., Raggi, A., Acharya, R., Reddy, R.A.V., Prakash, N.T.: Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. — J. Agr. Food Chem. 58: 2295–2301, 2010.CrossRefGoogle Scholar
  9. De Souza, M.P., Pilon-Smits, E.A.H., Lytle, C.M., Hwang, S., Tai, J.C., Honma, T.S.U., Yeh, L., Terry, N.: Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. — Plant Physiol. 117: 1487–1494, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Feng, R.W., Wei, C.Y., Tu, S.X.: The roles of selenium in protecting plants against abiotic stresses.: Environ. exp. Bot. 87: 58–68, 2013.CrossRefGoogle Scholar
  11. Filek, M., Gzyl-Malcher. B., Zembala. M., Bednarska, E., Laggner, P., Kriechbaum, M.: Effect of selenium on characteristics of rape chloroplasts modified by cadmium. — J. Plant Physiol. 167: 28–33, 2010.CrossRefPubMedGoogle Scholar
  12. Hawkesford, M.J., Zhao, F.J.: Strategies for increasing the selenium content of wheat. — J. Cereal Sci. 46: 282–292, 2007.CrossRefGoogle Scholar
  13. Hopper, J.L, Parker, D.R. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. — Plant Soil 210: 199–207, 1999.CrossRefGoogle Scholar
  14. Kahakachchi, C., Boakye, H.T., Uden, P.C., Tyson, J.F.: Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. — J. Chromatogr. 1054: 303–312, 2004.CrossRefGoogle Scholar
  15. Kápolna, E., Fodor, P.: Speciation analysis of selenium enriched green onions (Allium fistulosum) by HPLC-ICP-MS. — Microchem. J. 84: 56–62, 2006.CrossRefGoogle Scholar
  16. Kumar, M., Bijo, A.J., Baghel, R.S., Reddy, C.R.K., Jha, B.: Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. — Plant Physiol. Biochem. 51: 129–138, 2012.CrossRefPubMedGoogle Scholar
  17. Larsen, E.,H., Hansen, M., Paulin, H., Moesgaard, S., Reid, M., Rayman, M.: Speciation and bioavailability of selenium in yeast-based intervention agents used in cancer chemoprevention studies. — J. AOAC Int. 87: 225–232, 2004.PubMedGoogle Scholar
  18. Li, H.F., Lombi, E,, Stroud, J,L,, McGrath, S,P,, Zhao, F.J.: Selenium speciation in soil and rice: influence of water management and Se fertilization. — J. Agr. Food Chem. 58: 11837–11843, 2010.CrossRefGoogle Scholar
  19. Li, H.F., McGrath, S.P., Zhao, F.J.: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. — New Phytol. 178: 92–102, 2008.CrossRefPubMedGoogle Scholar
  20. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.CrossRefPubMedGoogle Scholar
  21. Ravel, B., Newville, M.: Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. — Synchrotron Radiat. 12: 537–541, 2005.CrossRefGoogle Scholar
  22. Rayman, M.P.: The importance of selenium to human health. — Lancet 356: 233–241, 2000.CrossRefPubMedGoogle Scholar
  23. Rayman, M.P.: The argument for increasing selenium intake. — Plant Nutr. Soc. 61: 203–215, 2002.CrossRefGoogle Scholar
  24. Rayman, M.P.: Selenium and human health. — Lancet 379: 1256–1268, 2012.CrossRefPubMedGoogle Scholar
  25. Rayman, M.P., Infante, H.G., Sargent, M.: Food-chain selenium and human health: spotlight on speciation. — Brit. J. Nutr. 100: 238–253, 2008.PubMedGoogle Scholar
  26. Sors, T.G., Ellis, D.R., Salt, D.E.: Selenium uptake, translocation, assimilation and metabolic fate in plants. — Photosynth. Res. 86: 373–389, 2005.CrossRefPubMedGoogle Scholar
  27. Terry, N., Zayed, A.M., De Souza, M.P., Tarun, A.S.: Selenium in higher plants. — Annu. Rev. Plant Biol. 51: 401–432, 2000.CrossRefGoogle Scholar
  28. Thomson, C.D.: Assessment of requirements for selenium and adequacy of selenium status: a review. — Eur. J. Clin. Nutr. 58: 391–402, 2004.CrossRefPubMedGoogle Scholar
  29. Wang, P., Menzies, N.W., Lombi, E., McKenna, B.A., James, S., Tang, C., Kopittke, P.M.: Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. — J. exp. Bot. 66: 4795–4806, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  30. White, P.J., Bowen, H.C., Parmaguru, P., Fritz, M., Spracklen, W.P., Spiby, R.E., Meacham, M.C., Mead, A., Harriman, M., Trueman, L.J., Smith, B.M., Thomas, B., Broadley, M.R.: Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. — J. exp. Bot. 55: 1927–1937, 2004.CrossRefPubMedGoogle Scholar
  31. Williams, P.N., Lombi, E., Sun, G.X., Scheckel, K., Zhu, Y.G., Feng, X.B., Zhu, J.M., Carey, A.M., Adomako, E., Lawgali, Y., Deacon, C., Meharg, A.A.: Selenium characterization in the global rice supply chain. — Environ. Sci. Technol. 43: 6024–6030, 2009.CrossRefPubMedGoogle Scholar
  32. Yao, X., Chu, J., Ba, C.: Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. — Biol. Trace Element Res. 13: 96–105, 2010.CrossRefGoogle Scholar
  33. Zhang, L.H., Hu, B., Li, W., Che, R.H., Deng, K., Li, H., Yu, F.Y., Li, H.Q., Li, Y.J., Chu, C.C.: OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. — New Phytol. 201: 1183–1191, 2014.CrossRefPubMedGoogle Scholar
  34. Zhu, Y.G., Pilon-Smits, E.A.H., Zhao, F.J., Williams, P. N., Meharg, A.A.: Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. — Trends Plant Sci. 14: 436–442, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • Q. Q. Huang
    • 1
    • 2
  • Q. Wang
    • 1
  • Y. N. Wan
    • 1
  • Y. Yu
    • 1
  • R. F. Jiang
    • 1
  • H. F. Li
    • 1
    Email author
  1. 1.College of Resources and Environmental SciencesChina Agricultural UniversityBeijingP.R. China
  2. 2.Institute of Agro-Environmental ProtectionMinistry of AgricultureTianjinP.R. China

Personalised recommendations