Skip to main content
Log in

Improving tobacco freezing tolerance by co-transfer of stress-inducible CbCBF and CbICE53 genes

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Cold stress is one of the major limitations to crop productivity worldwide. We investigated the effects of multiple gene expression from cold tolerant Capsella bursa-pastoris in transgenic tobacco (Nicotiana tabaccum) plants. We combined CblCE53 and CbCBF into a reconstruct vector by isocaudomers. Plant overexpression of CbICE53 under the stress inducible CbCOR15b promoter and CbCBF under a constitutive promoter showed increased tolerance to both chilling and freezing temperatures in comparison to wild-type plants, according to the electrolyte leakage and relative water content. The expressions of endogenous cold-responsive genes in transgenic tobacco (NtDREB1, NtDREB3, NtERD10a and NtERD10b) were obviously upregulated under normal and low temperature conditions. These results suggest that the CbICE53 + CbCBF transgenic plants showed a much greater cold tolerance as well as no dwarfism and delayed flowering. Thus they can be considered as a potential candidate for transgenic engineering for cold tolerant tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBF:

C-repeat binding factor

CDKA:

cyclin-dependent kinase A

COR:

cold-responsive

CRT/DRE:

C-repeat/dehydration responsive element

CYCB:

cyclin B

CYCD:

cyclin D

DREB:

dehydration responsive element binding protein

EV:

empty vector control

GFP:

green fluorescent protein

GUS:

β-glucuronidase

ICE:

inducer of CBF expression

LT:

low temperature

LTRD:

low temperature responsive elements

RT-qPCR:

reverse transcription quantitative polymerase chain reaction

WT:

wild type

References

  • Almeida, D.M., Almadanim, M.C., Lourenço, T., Abreu, I.A., Saibo, N.J., Oliveira, M.M.: Screening for abiotic stress tolerance in Rice: salt, cold, and drought. — Methods mol. Biol. 1398: 155–182, 2016.

    Article  PubMed  Google Scholar 

  • Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C., Thomashow, M.F.: Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. — Proc. nat. Acad. Sci. USA 93: 13404–13409, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict, C., Skinner, J.S., Meng, R., Chang, Y., Bhalerao, R., Huner, N.P., Finn, C.E., Chen, T.H., Hurry, V.: The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. — Plant Cell Environ. 29: 1259–1272, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur, P., Rao, S., Vadez, V., Reddy, D.S., Rathore, A., Yamaguchi-Shinozaki, K., Sharma, K.K.: Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. — Mol. Breed. 33: 327–340, 2014.

    Article  CAS  Google Scholar 

  • Chinnusamy, V., Zhu, J., Zhu, J.K.: Cold stress regulation of gene expression in plants. — Trends Plant Sci. 12: 444–451, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high salt- and cold-responsive gene expression. — Plant J. 33: 751–763, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Fowler, D.B., N'Diaye, A., Laudencia-Chingcuanco, D., Pozniak, C.J.: Quantitative trait loci associated with phonological development, low-temperature tolerance, grain quality, and agronomic characters in Wheat (Triticum aestivum L.). — PLoS ONE 11: e0152185, 2016

    Google Scholar 

  • Gilmour, S.J., Fowler, S.G., Thomashow, M.F.: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. — Plant mol. Biol. 54: 767–781, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. — Plant Physiol. 124: 1854–1865, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutha, L.R., Reddy, A.R.: Rice DREB1B promoter shows distinct stress-specific responses and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. — Plant mol. Biol. 68: 533–555, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z.: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. — Plant Physiol. 130: 639–648, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, T.S., Wu, Q., Hou, X.H., Li, Z.W., Zou, Y.P., Ge, S., Guo, Y.L.: Frequent introgressions from diploid species contribute to the adaptation of the tetraploid Shepherd's purse (Capsella bursa-pastoris). — Mol. Plant. 8: 427–438, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Holmberg, N., Bulow, L.: Improving stress tolerance in plants by gene transfer. — Trends Plant Sci. 3: 61–66, 1998.

    Article  Google Scholar 

  • Hsieh, T.H., Lee, J.T., Charng, Y.Y., Chan, M.T.: Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. — Plant Physiol. 130: 618–626, 2002a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh, T.H., Lee, J.T., Yang, P.T., Chiu, L.H., Charng, Y.Y., Wang, Y.C., Chan, M.T.: Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. — Plant Physiol. 129: 1086–1094, 2002b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, R., Zhu, X., Xiang, S., Zhan, Y., Zhu, M., Yin, H., Zhou, Q., Zhu, L., Zhang, X., Liu, Z.: Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco. — Biochem. biophys. Res. Commun. 469: 535–41, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, M.A., Dunn, M.A.: The molecular biology of plant acclimation to low temperature. — J. exp. Bot. 47: 291–305, 1996.

    Article  CAS  Google Scholar 

  • Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. — Plant Cell Physiol. 47: 141–153, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. — Science 280: 104–106, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydrationresponsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. — Plant Physiol. 127: 910–917, 2001.

    Article  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Nat. Biotechnol. 17: 287–291, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1a gene and stress-inducible RD29a promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. — Plant Cell Physiol. 45: 346–350, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.C., Huh, K.W., An, K., An, G., Kim, S.R.: Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). — Mol. Cells 18: 107–114, 2004.

    CAS  PubMed  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. — Plant Cell 10: 1391–1406, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. — Methods 25: 402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Murray, M.G., Thompson, W.F.: Rapid isolation of high molecular weight plant DNA. — Nucl. Acids Res. 8: 4321–4325, 1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P., Sarhan, F. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. - Plant Physiol. 129: 1368–1381, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, S.J., Kwon, C.W., Choi, D.W., Song, S.I.K., Kim, J.K.: Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. — J. Plant Biotechnol. 5: 646–656, 2007.

    Article  CAS  Google Scholar 

  • Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, M., Kim, Y.K.: Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. — Plant Physiol. 138: 341–351, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J.M., Park, C.J., Lee, S.B., Ham, B., Shin, R., Paek, K.: Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. — Plant Cell 13: 1035–1046, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S., Lee, C.M., Doherty, C.J., Gilmour, S.J., Kim, Y., Thomashow, M.F.: Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. — Plant J. 82: 193–207, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K., Hoisington, D.: Stress induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. — Genome 47: 493–500, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Pino, M.T., Skinner, J.S., Park, E.J., Jeknić, Z., Hayes, P.M., Thomashow, M.F., Hoisington, D.: Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. — Plant Biotechnol. J. 5: 591–604, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.S.P., Shinozaki, K., Yamaguchi-Shinozaki, K.: Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. — Plant J. 50: 54–69, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., Yamaguchi-Shinozaki, K.: DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. — Biochem. biophys. Res. Commun. 290: 998–1009, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Sakuma, Y., Maryyama, K., Qin, F., Osakabe, Y., Shinozaki, K., Yamaguchi-Shinozaki, K.: Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. — Proc. nat. Acad. Sci. USA 103:18822-18827, 2006.

  • Seki, M., Umezawa, T., Urano, K., Shinozaki, K.: Regulatory metabolic networks in drought stress responses. — Curr. Opin. Plant Biol. 10: 296–302, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Shan, D.P., Huang, J.G., Yang, Y.T., Guo, Y.H., Wu, C.A., Yang, G.D., Gao, Z., Zheng, C.C.: Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. — New Phytol. 176: 70–81, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Shen, C., Zhou, M.Q., Wu, L.H., Lin, J.: Construction of cold induction pathway multivalent vector in Capsella bursa-pastoris CBF and transformation of tobacco. — J. Shanghai Jiaotong Univ. 32: 33–44, 2014.

    Google Scholar 

  • Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q., Chen, S.Y.: An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor-induced by cold dehydration and ABA stress. — Theor. appl. Genet. 106: 923–930, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Shimamura, C., Ohno, R., Nakamura, C., Takumi, S.: Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. — J. Plant Physiol. 163: 213–219, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C., Murray, J.: Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. — Plant Physiol. 119: 343–351, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrell, D.A., Menges, M., Healy, J.M.S., Deveaux, Y., Amano, C., Su, Y., Nakagami, H., Shinmyo, A., Doonan, J.H., Sekine, M., Murray, J.: Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar Bright Yellow-2 cells. — Plant Physiol. 126: 1214–1223, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steponkus, P.L., Uemura, M., Webb, M.S.: Membrane destabilization during freeze-induced dehydration. — Curr. Topics Plant Physiol. 10: 37–47, 1993.

    CAS  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. — Proc. nat. Acad. Sci. USA 94: 1035–1040, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, P., Wang, J.: Characterization of the variable 3' UTR and expression of the two intron-containing KIN transcripts from Capsella bursa-pastoris. — Gene 507: 99–105, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow, M.F.: Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. — Plant Physiol. 154: 571–577, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow, M.F.: So what’s new in the field of plant cold acclimation? Lots! - Plant Physiol. 125: 89–93, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura, M., Josepg, R.A., Steponkus, P.L.: Cold acclimation of Arabidopsis thaliana effect on plasma membrane lipid composition and freeze-induced lesions. — Plant Physiol. 109: 15–30, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura, M., Steponkus, P.L.: Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. — Plant Physiol. 114: 1493–1500, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban, M.O., Klíma, M., Vítámvás, P., Vašek, J., Hilgert-Delgado, A.A., Kučera, V.: Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes. — J. Plant Physiol. 170: 1600–1608, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Vinocur, B., Altman, A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. — Planta 218: 1–14, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.L., Liu, S.X., Liu, X.J., Chen, Z.H., Liu, X.F., Pang, Y.Z., Sun, X.F., Tang, K.X.: Molecular cloning and characterization of a CBF gene from Capsella bursa-pastoris. — DNA Sequence 15: 180–187, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L.H., Zhou, M.Q., Shen, C., Liang, J., Lin, J.: Transgenic tobacco plants expressing CbCOR15b from Capsella bursa-pastoris show enhanced accumulation and tolerance to cold. — J. Plant Physiol. 169: 1408–1416., 2012.

    Article  CAS  PubMed  Google Scholar 

  • Xin, Z., Browse, J.: Cold comfort farm: the acclimation of plants to freezing temperatures. — Plant Cell Environ. 23: 893–902, 2000.

    Article  Google Scholar 

  • Xue, G.P.: The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. — Plant J. 33: 373–383, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Steinmetz, A., Meyer, D., Brown, S., Shen, W.H.: The tobacco A-type cyclin, Nicta; CYCA3; 2, at the nexus of cell division and differentiation. — Plant Cell 15: 2763–2777, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J., Thomashow, M.F.: Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. — Plant J. 39: 905–919, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Wu, L., Liang, J., Shen, C., Lin, J.: Expression analysis and functional characterization of a novel cold-responsive gene CbCOR15a from Capsella bursa-pastoris. — Mol. Biol. Rep. 39: 5169–5179, 2012a.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M.Q., Shen, C., Wu, L.H., Tang, K.X., Lin, J.: CBF-dependent signaling pathway: a key responder to low temperature stress in plants. — Crit. Rev. Biotechnol. 31: 186–192, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M.Q., Wu, L.H., Liang, J., Shen, C., Lin, J.: Cold-induced modulation of CbICE53 gene activates endogenous gene to enhance acclimation in transgenic tobacco. — Mol. Breed. 30: 1611–1620, 2012b.

    Article  CAS  Google Scholar 

  • Zhou, M.Q., Xu, M., Wu, L.H., Shen, C., Ma, H., Lin, J.: CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. — Plant mol. Biol. 85: 259–275, 2014.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. H. Yao or J. Lin.

Additional information

Acknowledgements: We are grateful for the financial support from the Natural Science Foundation of China (31370346), the National Key Technology R&D Program (2009BADA8B04), the National High Technology Research and Development Program of China (2008AA10Z105). The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Shen, C., Chen, H. et al. Improving tobacco freezing tolerance by co-transfer of stress-inducible CbCBF and CbICE53 genes. Biol Plant 61, 520–528 (2017). https://doi.org/10.1007/s10535-016-0687-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0687-2

Additional key words

Navigation