Skip to main content
Log in

Constitutive expression of SlTrxF increases starch content in transgenic Arabidopsis

  • Original paper
  • Published:
Biologia Plantarum

Abstract

The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGPase:

ADP-glucose pyrophosphorylase

Hyg:

hygromycin

ORF:

open reading frame

qPCR:

quantitative PCR

SSS:

soluble starch synthase

Trx:

thioredoxin

VC:

control vector

WT:

wild-type

References

  • Ballicora, M.A., Frueauf, J.B., Fu, Y., Schürmann, P., Preiss, J.: Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. — J. biol. Chem. 275: 1315–1320, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Blennow, A., Jensen, S.L., Shaik, S.S., Skryhan, K., Carciofi, M., Holm, P.B., Hebelstrup, K.H., Tanackovic, V.: Future cereal starch bioengineering cereal ancestors encounter gene technology and designer enzymes. — Cereal. Chem. 90: 274–287, 2013.

    Article  CAS  Google Scholar 

  • Burton, R.A., Jenner, H., Carrangis, L., Fahy, B., Fincher, G.B., Hylton, C., Laurie, D.A., Parker, M., Waite, D., Wegen, S.V., Verhoeven, T., Denyer, K.: Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. — Plant J. 31: 97–112, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Bustos, R., Fahy, B., Hylton, C.M., Seale, R., Nebane, N.M., Edwards, A., Martin, C., Smith, A.M.: Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers. — PNAS 101: 2215–2220, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delvallé, D., Dumez, S., Wattebled, F., Roldán, I., Planchot, V., Berbezy, P., Colonna, P., Vyas, D., Chatterjee, M., Ball, S., Mérida, A., D'Hulst, C.: Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. — Plant J. 43: 398–412, 2005.

    Article  PubMed  Google Scholar 

  • Fujita, N., Yoshida, M., Asakura, N., Ohdan, T., Miyao, A., Hirochika, H., Nakamura, Y.: Function and characterization of starch synthase I using mutants in rice. — Plant Physiol. 140: 1070–1084, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigenberger, P., Kolbe, A., Tiessen, A.: Redox regulation of carbon storage and partitioning in response to light and sugars. — J. exp. Bot. 56: 1469–1479, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger, P.: Regulation of starch biosynthesis in response to a fluctuating environment. — Plant Physiol. 155: 1566–1577, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelhaye, E., Rouhier, N., Navrot, N., Jacquot, J.P.: The plant thioredoxin system. — Cell. mol. Life Sci. 62: 24–35, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, T., Zhai, H., Wang, F.B., Yang, N.K., Wang, B., He, S.Z., Liu, Q.C.: Cloning and characterization of a carbohydrate metabolism-associated gene IbSnRK1 from sweetpotato. — Sci Hort. 158: 22–32, 2013.

    Article  CAS  Google Scholar 

  • Kötting, O., Kossmann, J., Zeeman, S.C., Lloyd, J.R.: Regulation of starch metabolism: the age of enlightenment? — Curr. Opin. Plant Biol. 13: 321–329, 2010.

    Article  PubMed  Google Scholar 

  • Li, X., Ma, H., Huang, H., Li, D., Yao, S.: Natural anthocyanins from phytoresources and their chemical researches. — Natur. Prod. Res. 27: 456–469, 2013.

    Article  CAS  Google Scholar 

  • Lou, X.M., Yao, Q.H., Zhang, Z., Peng, R.H., Xiong, A.S., Wang, K.K.: Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. — Clin. Vaccine Immunol. 14: 464–469, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, Y., Reichheld, J.P., Vignols, F.: Thioredoxins in Arabidopsis and other plants. — Photosynth. Res. 86: 419–433, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Nakamura, Y., Yuki, K., Park, S.Y., Ohya, T.: Carbohydrate metabolism in the developing endosperm of rice grains. — Plant Cell Physiol. 30: 833–839, 1989.

    Article  CAS  Google Scholar 

  • Roldan, I., Wattebled, F., Lucas, M.M., Delvalle, D., Planchot, V., Jimenez, S., Perez, R., Ball, S., D’Hulst, C., Merida, A.: The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. — Plant J. 49: 492–504, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Barrio, R., Corral-Martinez, P., Ancin, M., Segui-Simarro, J.M., Farran, I.: Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. — Plant Biotechnol. J. 11: 618–627, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative CT method. — Nat. Protoc. 3: 1101–1108, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Schürmann, P., Buchanan, B.B.: The ferredoxin/thioredoxin system of oxygenic photosynthesis. — Antioxid. Redox Signal. 10: 1235–1274, 2008.

    Article  PubMed  Google Scholar 

  • Skryhan, K., Cuesta-Seijo, J.A., Nielsen, M.M., Marri, L., Mellor, S.B., Glaring, M.A., Jensen, P.E., Palcic, M.M., Blennow, A.: The role of cysteine residues in redox regulation and protein stability of Arabidopsis thaliana starch synthase 1. — PLoS ONE 10: e0136997, 2015.

    Article  Google Scholar 

  • Smith, A.M., Zeeman, S.C.: Quantification of starch in plant tissues. — Nat. Protoc. 1: 1342–1345, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Sparla, F., Costa, A., Lo Schiavo, F., Pupillo, P., Trost, P.: Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. — Plant Physiol. 141: 840–850, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szydlowski, N., Ragel, P., Raynaud, S., Lucas, M.M., Roldan, I., Montero, M., Munoz, F.J., Ovecka, M., Bahaji, A., Planchot, V., Pozueta-Romero, J., D’Hulst, C., Merida, A.: Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthase. — Plant Cell 21: 2443–2457, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thormählen, I., Ruber, J., Von Roepenack-Lahaye, E., Ehrlich, S.M., Massot, V., Hummer, C., Tezycka, J., Issakidis-Bourguet, E., Geigenberger, P.: Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants. — Plant Cell Environ. 36: 16–29, 2013.

    Article  PubMed  Google Scholar 

  • Valerio, C., Costa, A., Marri, L., Issakidis-Bourguet, E., Pupillo, P., Trost, P., Sparla, F.: Thioredoxin-regulated betaamylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. — J. exp. Bot. 62: 545–555, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong, A.S., Yao, Q.H., Peng, R.H., Duan, H., Li, X., Fan, H.Q., Cheng, Z.M., Li, Y.: PCR-based accurate synthesis of long DNA sequences. — Nat. Protoc. 1: 791–797, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, A.S., Yao, Q.H., Peng, R.H., Li, X., Fan, H.Q., Cheng, Z.M., Li, Y.: A simple, rapid, high-fidelity and costeffective PCRbased two-step DNA synthesis method for long gene sequence. — Nucl. Acids Res. 32: e98, 2004.

    Article  Google Scholar 

  • Zhang, X., Henriques, R., Lin, S.S.: Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. — Nat. Protoc. 1: 641–646, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. B. Wang.

Additional information

Acknowledgments: This research was financially supported by the Natural Science Foundation of Jiangsu Province of China (BK2013256), the National Spark Plan Project of China (2014GA69002), and the Support Project of Jiangsu Provincial Department of Agriculture (BE2012445).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F.B., Kong, W.L., Fu, Y.R. et al. Constitutive expression of SlTrxF increases starch content in transgenic Arabidopsis . Biol Plant 61, 494–500 (2017). https://doi.org/10.1007/s10535-016-0675-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0675-6

Additional key words

Navigation