Skip to main content
Log in

Glucose-6-phosphate dehydrogenase plays critical role in artemisinin production of Artemisia annua under salt stress

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Artemisinin, a natural sesquiterpenoid isolated from Artemisia annua L., is regarded as the most efficient drug against malaria in the world. Artemsinin production in NaCl-treated A. annua seedlings and its relationships with the glucose-6-phosphate dehydrogenase (G6PDH) activity and generation of H2O2 and nitric oxide (NO) were investigated. Results revealed that artemisinin content in the seedlings was increased by 79.3 % over the control after 1-month treatment with 68 mM NaCl. The G6PDH activity was enhanced in the presence of NaCl together with stimulated generation of H2O2 and NO. Application of 1.0 mM glucosamine (GlcN), an inhibitor of G6PDH, blocked the increase of NADPH oxidase and nitrate reductase (NR) activities, as well as H2O2 and NO production in A. annua seedlings under the salt stress. The induced H2O2 was found to be involved in the upgrading gene expression of two key enzymes in the later stage of artemisinin biosynthetic pathway: amorphadiene synthase (ADS) and amorpha-4,11-diene monooxygenase (CYP71AV1). The released NO being attributed mainly to the increase of NR activity, negatively interacted with H2O2 production and enhanced gene expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Inhibition of NO generation partly blocked NaCl-induced artemisinin accumulation, and NO donor strongly rescued the decreased content of artemisinin caused by GlcN. These results suggest that G6PDH could play a critical role in NaCl-induced responses and artemisinin biosynthesis in A. annua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADS:

amorphadiene synthase

BSA:

bovine serum albumin

cPTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

CYP71AV1:

amorpha-4,11-diene monooxygenase

DPI:

diphenylene iodonium

DXR:

1-deoxy-D-xylulose-5-phosphate reductoisomerase

EDTA:

ethylenediaminetetraacetic acid

FPP:

farnesyl diphosphate

G6PDH:

glucose-6-phosphate dehydrogenase

GlcN:

glucosamine

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HMGR:

3-hydroxy-3-methylglutaryl coenzyme A reductase

HPLC:

high-performance liquid chromatography

IPP:

isopentenyl diphosphate

L-NAME:

-nitro-L-arginine methyl ester

MEP:

2-C-methyl-D-erythritol-4-phosphate

MTT:

3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide

MVA:

mevalonate

NO:

nitric oxide

NOS:

NO synthase

NR:

nitrate reductase

OPPP:

oxidative pentose phosphate pathway

PES:

phenazine ethosulfate

PVDF:

polyvinylidene difluoride

qPCR:

quantitative PCR

ROS:

reactive oxygen species

SA:

salicylic acid

SOD:

superoxide dismutase

TCA:

trichloroacetic acid

References

  • Aftab, T., Khan, M.M.A., Da Silva, J.A.T., Idrees, M., Naeem, M.: Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. — J. Plant Growth Regul. 30: 425–435, 2011.

    Article  CAS  Google Scholar 

  • Bertea, C.M., Freije, J.R., Van der Woude, H., Verstappen, F.W., Perk, L., Marquez, V., De Kraker, J.W., Posthumus, M.A., Jansen, B.J., de Groot, A., Franssen, M.C., Bouwmeester, H.J.: Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. — Planta med. 71: 40–47, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Besson-Bard, A., Pugin, A., Wendehenne, D.: New insights into nitric oxide signaling in plants. — Annu. Rev. Plant Biol. 59: 21–39, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G.D., Sy, L.K.: In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. — Tetrahedron 60: 1139–1159, 2004.

    Article  CAS  Google Scholar 

  • Esposito, S., Carillo, P., Carfagna, S.: Ammonium metabolism stimulation of glucose-6P dehydrogenase and phosphoenolpyruvate carboxylase in young barley roots. — J. Plant Physiol. 153: 61–66, 1998.

    Article  CAS  Google Scholar 

  • Fan, H., Guo, S., Jiao, Y., Zhang, R., Li, J.: Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. — Front. Agr. China 1: 308–314, 2007.

    Article  Google Scholar 

  • Gibon, Y., Larher, F.: Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. — Anal. Biochem. 25: 153–157, 1997.

    Article  Google Scholar 

  • Ju, H.W., Koh, E.J., Kim, S.H., Kim, K.I., Lee, H., Hong, S.W.: Glucosamine causes overproduction of reactive oxygen species, leading to repression of hypocotyl elongation through a hexokinase-mediated mechanism in Arabidopsis. — J. Plant Physiol. 166: 203–212, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kjær, A., Verstappen, F., Bouwmeester H., Ivarsen, E., Fretté, X., Christensen, L.P., Grevsen, K., Jensen, M.: Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress. — Planta 237: 955–966, 2013.

    Article  PubMed  Google Scholar 

  • Kletzien, R.F., Harris, P.K., Foellmi, L.A.: Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. — FASEB J. 8: 174–181, 1994.

    CAS  PubMed  Google Scholar 

  • Liu, J., Wang, X.M., Hu, Y.F., Hu, W., Bi, Y.R.: Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots. — Plant Cell Rep. 32: 415–429, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y.G., Wu, R.R., Wan, Q., Xie, G.Q., Bi, Y.R.: Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. — Plant Cell Physiol. 48: 511–522, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Lu, D., Dong, J.F., Jin, H.H., Sun, L.N., Xu, X.B., Zhou, T., Zhu, Y., Xu, M.J.: Nitrate reductase-mediated nitric oxide generation is essential for fungal elicitor-induced camptothecin accumulation of Camptotheca acuminata suspension cell cultures. — Appl. Microbiol. Biotechnol. 90: 1073–1081, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Małolepsza, U., Różalska, S.: Nitric oxide and hydrogen peroxide in tomato resistance: Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato. - Plant Physiol. Biochem. 43, 623–635, 2005.

    Article  PubMed  Google Scholar 

  • Marchese, J.A., Ferreira, J.F., Rehder, V.L., Rodrigues, O.: Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). — Braz. J. Plant Physiol. 22: 1–9, 2010.

    Article  Google Scholar 

  • Martinez, C., Montillet, J.L., Bresson, E., Agnel, J.P., Dai, G.H., Daniel, J.F., Geiger, J.P., Nicole, M.: Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum race 18. — Mol. Plant Microbe interact. 11: 1038–1047, 1998.

    Article  CAS  Google Scholar 

  • Murphy, M.E., Noack, E.: Nitric oxide assay using hemoglobin method. — Methods Enzymol. 233: 240–250, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Nemoto, Y., Sasakuma, T.: Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.). — Plant Sci. 158: 53–60, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, K.T., Arsenault, P.R., Weathers, P.J.: Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L. — In Vitro cell. dev. Biol. Plant 47: 329–338, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson, L., Engström, A., Lundgren, A., Brodelius, P.E.: Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. — BMC Plant Biol. 11: 45, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco-Cárdenas, M., Ryan, C.A.: Nitric oxide negatively modulates wound signaling in tomato plants. — Plant Physiol. 130: 487–493, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, W.S., Zheng, L.P., Tian, H., Li, W.Y., Wang, J.W.: Transcriptome responses involved in artemisinin production in Artemisia annua L. under UV-B radiation. — J. Photochem. Photobiol. B: Biol. 140: 292–300, 2014.

    Article  CAS  Google Scholar 

  • Prasad, A., Kumar, D., Anwar, M., Singh, D.V., Jain, D.C.: Response of Artemisia annua L. to soil salinity. — J. Herbs Spices med. Plants. 5: 49–55, 1998.

    Article  Google Scholar 

  • Qian, Z.H., Gong, K., Zhang, L., Lv, J.B., Jing, F.Y., Wang, Y.Y., Guan, S.B., Wang, G.F., Tang, K.X.: A simple and efficient procedure to enhance artemisinin content in Artemisia annua L. by seeding to salinity stress. — Afr. J. Biotechnol. 6: 1410–1413, 2010.

    Google Scholar 

  • Qureshi, M.I., Israr, M., Abdin, M.Z., Iqbal, M.: Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ. exp. Bot. 53: 185–193, 2005.

    Article  CAS  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., Mittler, R.: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. — Plant Physiol. 134: 1683–1696, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan, N.S., Kumar, R., Srivastava, S., Kumar, A., Gupta, A., Sangwan, R.S.: Recent developments on secondary metabolite biosynthesis in Artemisia annua L. — J. Plant Biol. 37: 1–24, 2010.

    Google Scholar 

  • Shetty, P., Atallah, M.T., Shetty, K.: Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba. — Process Biochem. 37:1285-1295, 2002.

  • Siddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O.: Role of nitric oxide in tolerance of plants to abiotic stress. - Protoplasma 248, 447–455, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Šindelář, L., Šindelářová, M.: Correlation of viral RNA biosynthesis with glucose-6-phosphate dehydrogenase activity and host resistance. — Planta 215: 862–869, 2002.

    Article  PubMed  Google Scholar 

  • Towler, M.J., Weathers, P.J.: Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. — Plant Cell Rep. 26: 2129–2136, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Valderrama, R., Corpas, F.J., Carreras, A., Fernández-Ocaña, A., Chaki, M., Luque, F., Gómez-Rodríguez, M.V., Colmenero-Varea, P., del Río, L.A., Barroso, J.B.: Nitrosative stress in plants. — FEBS Lett. 581: 453–461, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. — Plant Sci. 151: 59–66, 2000.

    Article  CAS  Google Scholar 

  • Wang, J.W., Wu, J.Y.: Involvement of nitric oxide in elicitorinduced defense responses and secondary metabolism of Taxus chinensis cells. — Nitric Oxide 11: 298–306, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.W., Zheng, L.P., Zhang, B., Zou, T. Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. - Appl. Microbiol. Biotechnol. 85: 285–292, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.M., Ma, Y.Y., Huang, C.H., Wan, Q., Li, N., Bi, Y.R.: Glucose-6-phosphate dehydrogenase plays a central role in modulating reduced glutathione levels in reed callus under salt stress. — Planta 227: 611–623, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S., Qi, J., Zhang, W., Liu, S., Xiao, F., Zhang, M., Xu, G., Zhao, W., Shi, M., Pang, Y., Shen, H., Yang, Y.: Nitric oxide regulates shikonin formation in suspension-cultured Onosma paniculatum cells. - Plant Cell Physiol. 50, 118–128, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L.J., Lan, W.Z., Chen, C., Yang, Y.: Glutathione levels control glucose-6-phosphate dehydrogenase activity during elicitor-induced oxidative stress in cell suspension cultures of Taxus chinensis. — Plant Sci. 167: 329–335, 2004.

    Article  CAS  Google Scholar 

  • Yu, L.J., Lan, W.Z., Chen, C., Yang, Y., Sun, Y.P.: Importance of glucose-6-phosphate dehydrogenase in taxol biosynthesis in Taxus chinensis cultures. — Biol. Plant. 49: 265–268, 2005.

    Article  CAS  Google Scholar 

  • Zago, E., Morsa, S., Dat, J.F., Alard, P., Ferrarini, A., Inzé, D., Delledonne, M., Breusegem, F.V.: Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. — Plant Physiol. 141: 404–411, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Zheng, L.P., Li, W.Y., Wang, J.W. Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. - Curr. Nanosci. 9: 363–370, 2013a.

    Article  CAS  Google Scholar 

  • Zhang, B., Zheng, L.P., Wang, J.W.: Nitric oxide elicitation for secondary metabolite production in cultured plant cells. — Appl. Microbiol. Biotechnol. 93: 455–466, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Liu, J., Wang, X.M, Bi, Y.R.: Glucose-6-phosphate dehydrogenase acts as a regulator of cell redox balance in rice suspension cells under salt stress. — Plant Growth Regul. 69: 139–148, 2013b.

    Article  CAS  Google Scholar 

  • Zhao, J., Fujita, K., Sakai, K.: Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis. - New Phytol. 175, 215–229, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L.Q., Zhang, F., Guo, J.K., Yang, Y.L., Li, B.B., Zhang, L.X.: Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. — Plant Physiol. 134: 849–857, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, M.G., Tian, Q.Y., Zhang, W.H.: Nitric oxide synthasedependent nitric oxide production is associated with salt tolerance in Arabidopsis. — Plant Physiol. 144: 206–217, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, S.S., Zeng, M.Y.: [tle in English] Spektrometrische hochdruck-flüssigkeits-chromatographische (HPLC) Untersuchungen zur Analytik von Qinghaosu. - Planta med. 51: 233–237, 1985. [In German]

    Article  Google Scholar 

  • Zheng, L.P., Zhang, B., Zou, T., Chen, Z.H., Wang, J.W.: Nitric oxide interacts with reactive oxygen species to regulate oligosaccharide-induced artemisinin biosynthesis in Artemisia annua hairy roots. — J. med. Plants Res. 4: 758–765, 2010.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Wang.

Additional information

Acknowledgements: The authors are grateful to the Graduate Program of Higher Education in Jiangsu Province (No. CXLX13-841), the Suzhou Scholar Program (No. 14317363), and the projects sponsored by the NSFC (No. 81273487) for financial support of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.W., Tian, H., Yu, X. et al. Glucose-6-phosphate dehydrogenase plays critical role in artemisinin production of Artemisia annua under salt stress. Biol Plant 61, 529–539 (2017). https://doi.org/10.1007/s10535-016-0674-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0674-7

Additional key words

Navigation