Skip to main content

Advertisement

Log in

Characterization of the high-affinity phosphate transporter PHT1;4 gene promoter of Arabidopsis thaliana in transgenic wheat

  • Original paper
  • Published:
Biologia Plantarum

Abstract

The root specificity and phosphate (Pi) deficiency responsiveness of high-affinity phosphate transporter (PHT1) genes point to their promoters as a sustainable system to drive Pi acquisition-related transgenes in plants. In this study, a 3-kb promoter of the AtPHT1;4 gene from Arabidopsis thaliana fused to the β-glucuronidase (GUS) reporter gene was biolistically introduced into wheat (Triticum aestivum L.) and functionally characterized in transgenic plants grown in hydroponics and in pots with soil under various Pi supply rates. From among 27 T1 progeny derived from 250 T0, four transgenic lines reached T3, with two of them showing detectable GUS activity in the roots of T4 plants. An unusually high number of transgene insertions characterized these transgenic lines, along with an irregular pattern of histochemical GUS staining and weak GUS activity. GUS expression driven by AtPHT1;4 was consistently higher under most assay conditions, as it was unaffected by 0 to 0.5 mM Pi in hydroponically grown plants, as well as by 16 to 20 mg(P) kg-1(soil) in potted plants. Raising the soil P up to or above 40 mg kg-1 significantly down-regulated the quantity of GUS transcripts. These results show that the responsiveness of the AtPHT1;4 promoter to Pi availability in transgenic wheat was restricted to soil-grown plants, which highlighted the relevance of the substrate and Pi supply rates in assessing molecular responses to Pi deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAT:

days after transplantation

GUS:

β-glucuronidase

PAE:

Pi acquisition efficiency

PHT1:

high affinity phosphate transporter 1

Pi:

phosphate

RT-qPCR:

reverse transcription quantitative polymerase chain reaction

References

  • Ahmad, A., Maqbool, S.B., Hashsham, S.A., Sticklen, M.B.: Determination of cryIAb and cryIAc copy number in transgenic Basmati 370 rice (Oryza sativa L.) plants using real-time PCR and its comparison with Southern blot. — J. biol. Sci. 5: 282–288, 2005.

    Google Scholar 

  • Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, H., Datta, K., Datta, S., Dix, P.J., Fauquet, C., Huang, N., Kohli, A., Mooibroek, H., Nicholson, L., Nguyen, T.T., Nugent, G., Raemakers, K., Romano, A., Nomers, D.A., Stoger, E., Taylor, N., Visser, R.: Particle bombardment and the genetic enhancement of crops: myths and realities. — Mol. Breed. 15: 305–327, 2005.

    Article  Google Scholar 

  • Ames, B.N.: Assay of inorganic phosphate, total phosphate and phosphatases. — Methods Enzymol. 8: 115–118, 1966.

    Article  CAS  Google Scholar 

  • Bahieldin, A., Eissa, H.F., Mahfouz, H.T., Dyer, W.E., Madkour, M.A., Qu, R.: Evidence for non-proteinaceous inhibitor(s) of β-glucuronidase in wheat (Triticum aestivum L.) leaf and root tissues. — Plant Cell Tissue Organ Cult. 82: 11–17, 2005.

    Article  CAS  Google Scholar 

  • Bari, R., Pant, B.D., Stitt, M., Scheible, W.R.: PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. — Plant Physiol. 141: 988–999, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, D.A., Clark, L.J., Howarth, J.R., Parmar, S., Hawkesford, M.J.: Mechanical impedance and nutrient acquisition in rice. — Plant Soil 280: 65–76, 2006.

    Article  CAS  Google Scholar 

  • Burleigh, S.H., Harrison, M.J.: The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. — Plant Physiol. 119: 241–248, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campillo, R., Hirzel, J., Jobet, C.: Fertilización del cultivo del trigo harinero [Fertilization of bread wheat crops]. - In: Hirzel, J. (ed.): Fertilización de Cultivos en Chile. Pp. 11–80. INIA, Santiago 2011.

    Google Scholar 

  • Chiou, T.J., Lin, S.I.: Signaling network in sensing phosphate availability in plants. — Annu. Rev. Plant Biol. 62: 185–206, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Coelho, G., Carneiro, N., Karthikeyan, A., Raghothama, K., Schaffert, R., Brandão, R., Paiva, L., Souza, I., Alves, V., Imolesi, A., Carvalho, C., Carneiro, A.: A phosphate transporter promoter from Arabidopsis thaliana AtPHT1;4 gene drives preferential gene expression in transgenic maize roots under phosphorus starvation. — Plant mol. Biol. Rep. 28: 717–723, 2010.

    Article  CAS  Google Scholar 

  • Davies, T.G.E., Ying, J., Xu, Q., Li, Z.S., Li, J., Gordon-Weels, R.: Expression analysis of putative high affinity phosphate transporters in Chinese winter wheat. — Plant Cell Environ. 25: 1325–1339, 2002.

    Article  CAS  Google Scholar 

  • Day, C.D., Lee, E., Kobayashi, J., Holappa, L.D., Albert, H., Ow, D.W.: Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. — Gene Dev. 14: 2869–2880, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Buck, S., Peck, I., Wilde, C.D., Marjanac, G., Nolf, J., De Paepe, A., Depicker, A.: Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. — Plant Physiol. 145: 1171–1182, 2007. Di

    Article  PubMed  PubMed Central  Google Scholar 

  • Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W.: InfoStat, Versión 2008. — Grupo InfoStat FCA, Universidad Nacional de Córdoba, Córdoba 2008.

    Google Scholar 

  • He, C.J., Finlayson, S.A., Drew, M.C., Jordan, W.R., Morgan, P.W.: Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. — Plant Physiol. 112: 1679–1685, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson, R.A.: Assaying chimeric genes in plants: the GUS gene fusion system. — Plant mol. Biol. Rep. 5: 387–405, 1987.

    Article  CAS  Google Scholar 

  • Jia, H., Ren, H., Gu, M., Zhao, J., Sun, S., Zhang, X., Chen, J., Wu, P., Xu, G.: The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. — Plant Physiol. 156: 1164–1175, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan, A.S., Varadarajan, D.K., Mukatira, U.T., D’Urzo, M.P., Damsz, B., Raghothama, K.G.: Regulated expression of Arabidopsis phosphate transporters. — Plant Physiol. 130: 221–233, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan, A.S., Ballachandra, D.N., Raghothama, K.G.: Promoter deletion analysis elucidates the role of cis elements and 5’UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. — Physiol. Plant. 136: 10–18, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Koyama, T., Ono, T., Shimizu, M., Jimbo, T., Mizuno, R., Tomita, K., Mitsukawa, N., Kawazu, T., Kimura, T., Ohmiya, K., Sakka, K.: Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. — J. Biosci. Bioeng. 99: 38–42, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Lei, M., Zhu, C., Liu, Y., Karthikeyan, A.S., Bressan, R.A., Raghothama, K.G., Liu, D.: Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatase and anthocyanin in Arabidopsis. — New Phytol. 189: 1084–1095, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G.D., Dunlop, J., Phungz, T.: Induction of root hair growth in a phosphorus-buffered culture solution. — J. Integrative Agr. 5: 370–376, 2006.

    CAS  Google Scholar 

  • Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. — Methods 25: 402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Lonsdale, D.M., Moisan, L.J., Harvey, A.J.: PFC1 to pFC7: a novel family of combinatorial cloning vectors. — Plant mol. Biol. Rep. 13: 343–345, 1995.

    Article  CAS  Google Scholar 

  • Mane, V.P., Heuer, M.A., Hillyer, P., Navarro, M.B., Rabin, R.L.: Systematic method for determining an ideal housekeeping gene for real-time PCR analysis. — J. Biomol. Technol. 19: 342–347, 2008.

    Google Scholar 

  • Marjanac, G., Karimi, M., Naudts, M., Beeckman, T., Depicker, A., De Buck, S.: Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. — New Phytol. 184: 851–864, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Marenkova, T.V., Loginova, D.B., Deineko, E.V.: Mosaic patters of transgene expression in plants. — Russ. J. Genet. 48: 249–260, 2012.

    Article  CAS  Google Scholar 

  • Miao, J., Sun, J., Liu, D., Li, B., Zhang, A., Li, Z., Tong, Y.: Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. — J. Genet. Genomics 36: 455–466, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Misson, J., Thibaud, M.C., Bechtold, N., Raghothama, K., Nussaume, L.: Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. — Plant mol. Biol. 55: 727–741, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Mudge, S.R., Rae, A.L,, Diatloff, E., Smith, F.W.: Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. — Plant J. 31: 341–353, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Mudge, S.R., Smith, S.W., Richardson, A.E.: Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. — Plant Sci. 165: 871–878, 2003.

    Article  CAS  Google Scholar 

  • Mukatira, U.T., Liu, C., Varadarajan, D.K., Raghothama, K.G.: Negative regulation of phosphate starvation-induced genes. — Plant Physiol. 127: 1854–1862, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Nagarajan, V.K., Smith, A.P.: Ethylene’s role in phosphate starvation signaling: more than just a root growth regulator. — Plant Cell Physiol. 53: 277–286, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Nagy, R., Vasconcelos, M.J, Zhao, S., McElver, J., Bruce, W., Amrhein, N., Raghothama, K.G., Bucher, M.: Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). — Plant Biol. 8: 186–197, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, T., Tsurumi, S., Shibasaki, K., Obana, Y., Takaji, H., Oono, Y., Rahman, A.: Genetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance. — Plant Physiol. 146: 1651–1662, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A.: Estimation of available phosphorus in soils by extraction with sodium bicarbonate. — Circular 939, US Department of Agriculture, Washington DC. 1954.

    Google Scholar 

  • Oono, Y., Kobayashi, F., Kawahara, Y., Yazawa, T., Handa, H., Itoh, T., Matsumoto, T.: Characterization of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat. — BMC Genomics 14: 77, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszkowski, U., Kroken, S., Roux, C., Briggs, S.P.: Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. — Proc. nat. Acad. Sci. USA 99: 13324–3329, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peñaloza, E., Muñoz, G., Salvo-Garrido, H., Silva, H., Corcuera, L.J.: Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. — J. exp. Bot. 56: 145–153, 2005.

    PubMed  Google Scholar 

  • Rae, A.L., Cybinski, D.H., Jarmey, J.M., Smith, F.W.: Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. — Plant mol. Biol. 53: 27–36, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Rae, A.L., Jarmey, J.M., Mudge, S.R., Smith, F.W.: Overexpression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. — Funct. Plant Biol. 31: 141–148, 2004.

    Article  CAS  Google Scholar 

  • Ramadan, A.M., Eissa, H.F., El-Domyati, F.M., Saleh, O.M., Ibrahim, N.E., Salama, M., Mahfouz, M.M., Bahieldin, A.: Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat. — Plant Cell Tissue Organ Cult. 107: 373–381, 2011.

    Article  CAS  Google Scholar 

  • Rausch, C., Bucher, M.: Molecular mechanisms of phosphate transport in plants. — Planta 216: 23–37, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, M.S.S., Dinkins, R.D., Collins, G.B.: Gene silencing in transgenic soybean plants transformed via particle bombardment. — Plant Cell Rep. 21: 676–683, 2003.

    CAS  PubMed  Google Scholar 

  • Rooke, L., Steele, S.H., Barcelo, P., Shewry, P.R., Lazzeri, P.A.: Transgene inheritance, segregation and expression in bread wheat. — Euphytica 129: 301–309, 2003.

    Article  CAS  Google Scholar 

  • Rubio, V., Linhares, F., Solano, R., Martín, A.C., Iglesias, J., Leyva, A., Paz-Ares, J.: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. — Genes Dev. 15: 2122–2133, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schünmann, P.H.D., Richardson, A.E., Smith, F.W., Delhaize, E.: Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). — J. exp. Bot. 55: 855–865, 2004a.

    Article  PubMed  Google Scholar 

  • Schünmann, P.H.D., Richardson, A.E., Vickers, C.E., Delhaize, E.: Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. — Plant Physiol. 136: 4205–4214, 2004b.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin, H., Shin, H.S., Dewbre, G.R., Harrison, M.J.: Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from low-and high-phosphate environments. — Plant J. 39: 629–642, 2004

    Article  CAS  PubMed  Google Scholar 

  • Sivamani, E., Brey, C.W., Talbert, L.E., Young, M.A., Dyer, W.E., Kaniewski, W.K., Qu, R.: Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. — Transgenic Res. 11: 31–41, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Teng, W., Deng, Y., Chen, X.P., Xu, X.F., Chen, R.Y., Lv, Y., Zhao, Y.Y., Zhao, X.Q., He, X., Li, B., Tong, Y.P., Zhang, F.S., Li, Z.S.: Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. — J. exp. Bot. 64: 1403–1411, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thibaud, M.C., Arrighi, J.F., Bayle, V., Chiarenza, S., Creff, A., Bustos, R., Paz-Ares, J., Poirier, Y., Nussaume, L.: Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. — Plant J. 64: 775–789, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Tittarelli, A., Milla, L., Vargas, F., Morales, A., Neupert, C., Meisel, L.A., Salvo, H., Peñaloza, E., Muñoz, G., Corcuera, L,J., Silva, H.: Isolation and comparative analysis of the TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. — J. exp. Bot. 58: 2573–2582, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Q., Cong, L., Chang, J.L., Li, K.X., Yang, G.X., He, G.Y.: Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. — J. exp. Bot. 57: 3737–3746, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Jiao, F., Wu, Z., Li, Y., Wang, X., He, X., Zhong, W., Wu, P.: OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. — Plant Physiol. 146: 1673–1686, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Peñaloza.

Additional information

Acknowledgments: The authors wish to thank Dr. W. Harwood (John Innes Centre/The Biotechnology and Biological Science Research Council, UK) for providing the pAL51 plasmid. This research was supported by grants from the FONDECYT (1090571) and the ICM Millennium Nucleus in Plant Cell Biotechnology (PCB, P06-065-F), Chile.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peñaloza, E., Santiago, M., Cabrera, S. et al. Characterization of the high-affinity phosphate transporter PHT1;4 gene promoter of Arabidopsis thaliana in transgenic wheat. Biol Plant 61, 453–462 (2017). https://doi.org/10.1007/s10535-016-0672-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0672-9

Additional key words

Navigation