Some key physiological and molecular processes of cold acclimation

Abstract

Agricultural production worldwide has been severely impacted by cold and freezing stresses. Plant capacity to acclimate to environmental conditions in their immediate vicinity largely control their survival, growth, and productivity. Molecular as well as biochemical mechanisms underpinning plant cold acclimation are very complex and interwoven. The cold-impacted plants try to modulate expression of variety genes controlling cell membrane lipid composition, mitogen-activated protein kinase cascade, total soluble proteins, polyamines, glycinebetaine, proline, reactive oxygen species (ROS) scavengers, cryoprotectants, and a large number of cold responsive factors. To this end, this paper dissects the array of transcriptional factors/genes down- or up-regulated, their identification in different plant species, recognition of cold tolerant/resistant transgenic plants, complexity of the mitogen-activated protein kinase cascade, as well as their cross talk under different stresses and molecular mechanisms. Furthermore, it also comprehensively elucidates physio-biochemical interferences in cold acclimation with a particular emphasis on endogenous content as well as exogenously supplied different types of polyamines, ROS, and osmoprotectants. Overall, low temperature stress tolerance or cold acclimation varies greatly among species depending on the stress intensity and duration and type of plant species.

This is a preview of subscription content, access via your institution.

Abbreviations

α-Gal:

alpha-galactosidase

ABA:

abscisic acid

ADC:

arginine decerboxylase

APX:

ascorbate peroxidase

BADH:

betaine aldehyde dehydrogenase

bHLH:

basic helix-loop-helix

CBF:

C-repeat/DRE-binding factor

COR:

cold-regulated

DRE:

dehydration-responsive element

ERD:

early-responsive to dehydration

ERF:

ethylene-response factor

Fv/Fm :

variable to maximum chlorophyll fluorescence ratio

GA:

gibberellin

GB:

glycinebetaine

GPX:

glutathione peroxidase

ICE1:

inducer of CBF expression1

MAPK:

mitogen-activated protein kinase

MAPKK:

MAPK kinase

MAPKKK:

MAPK kinase kinase

MYB:

myeloblastosis

MYC:

myelocytomatosis

P5CS:

pyrroline-5-carboxylate synthetase

PAs:

polyamines

RCI:

rare cold-inducible gene

ROS:

reactive oxygen species

Spd:

spermidine

Spm:

spermine

TF:

transcription factor

References

  1. Abavisani, A., Khorshidi, M., Sherafatmandjour, A.: Interaction between cold stress and polyamine on antioxidant properties in dragonhead. — Int. J. Agr. Crop Sci. 5: 2555–2560, 2013.

    Google Scholar 

  2. Abbas, W., Ashraf, M., Akram, N.A.: Alleviation of saltinduced adverse effects in eggplant (Solanum melongena L.) by foliar-applied natural and synthetic glycinebetaine. — Sci. Hort. 125: 188–195, 2010.

    CAS  Article  Google Scholar 

  3. Abdel Kader, D.Z., Amal, A.A.H., Elmeleigy, S.A., Dosoky, N.S.: Chilling-induced oxidative stress and polyamines regulatory role in two wheat varieties. — J. Taibah Univ. Sci. 5: 14–24, 2011.

    Article  Google Scholar 

  4. Akram, N.A., Ashraf, M.: Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid (ALA). — J. Plant Growth Regul. 32: 663–679, 2013.

    CAS  Article  Google Scholar 

  5. Alcázar, R., Marco. F., Cuevas, J.C., Patron, M., Ferrando, A.: Involvement of polyamines in plant response to abiotic stress. — Biotechnol. Lett. 28: 1867–1876, 2006.

    PubMed  Article  CAS  Google Scholar 

  6. Alcázar, R., Bitrián, M., Bartels, D., Koncz, C., Altabella, T., Tiburcio, A.: Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. — Plant Signal. Behav. 6: 243–250, 2011.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P., Tiburcio, A.F.: Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. — Planta 231: 1237–1249, 2010.

    PubMed  Article  CAS  Google Scholar 

  8. Alet, A.I., Sanchez, D.H., Cuevas, J.C.: Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. — Plant Signal. Behav. 6: 278–286, 2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. — Biotechnol. Adv. 27: 84–93, 2009.

    CAS  PubMed  Article  Google Scholar 

  10. Ashraf, M., Akram, N.A., Al-Qurainy, F., Foolad, M.: Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. — Adv. Agron. 111: 249–296, 2011.

    CAS  Article  Google Scholar 

  11. Atkinson, N.J., Urwin, P.E.: The interaction of plant biotic and abiotic stresses: from genes to the field. — J. exp. Bot. 63: 3523–3543, 2012.

    CAS  PubMed  Article  Google Scholar 

  12. Bansal, K.C., Goel, D., Singh, A.K., Yadav, V., Babbar, S.B., Murata, N.: Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. — J. Plant Physiol. 168: 286–1294, 2011.

    Google Scholar 

  13. Beck, E.H., Heim, R., Hansen, J.: Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. — J. Biosci. 29: 449–459, 2004.

    PubMed  Article  Google Scholar 

  14. Beck, E.H., Fettig, S., Knake, C., Hartig, K., Bhattarai, T.: Specific and unspecific responses of plants to cold and drought stress. — J. Biosci. 32: 501–510, 2007.

    CAS  PubMed  Article  Google Scholar 

  15. Benedict, C., Skinner, J.S., Meng, R., Chang, Y., Bhalerao, R., Huner, N.P.A., Finn, C.E., Chen, T.H.H., Hurry, V.: The CBF1-dependent low temperature signalling pathway, regulon, and increase in freeze tolerance are conserved in Populus spp. — Plant Cell Environ. 29: 1259–1272, 2006.

    CAS  PubMed  Article  Google Scholar 

  16. Bitrian, M., Zarza, X., Altabella, T., Tiburcio, A.F., Alcázar, R.: Polyamines under abiotic stress: metabolic crossroads and hormonal cross talks in plants. — Metabolites 2: 516–528, 2012.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Blum, A.: Plant Breeding for Stress Environments. - CRC Press, Boca Raton 1988.

    Google Scholar 

  18. Carvalho, A.L., Cardoso, F.S., Bohn, A., Neves, A.R., Santos, H.: Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl. environ. Microbiol. 77: 4189–4199, 2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Cavender-Bares, J.: Chilling and freezing stress in live oaks (Quercus section Virentes): intra- and inter-specific variation in PS II sensitivity corresponds to latitude of origin. — Photosynth. Res. 94: 437–453, 2007.

    CAS  PubMed  Article  Google Scholar 

  20. Chen, L.J., Xiang, H.Z., Miao, Y., Zhang, L., Guo, Z.F., Zhao, X.H., Lin, J.W., Li, T.L.: An overview of cold resistance in plants. — J. Agron. Crop Sci. 200: 237–245, 2014.

    CAS  Article  Google Scholar 

  21. Chen, N.A., Xu, Y., Wang, X., Du, C., Du, J., Yuan, M.: OsRAN2, essential for mitosis enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. — Plant Cell Environ. 34: 52–64, 2011.

    CAS  PubMed  Article  Google Scholar 

  22. Chen, Q.F., Xiao, S., Chye, M.L.: Overexpression of the Arabidopsis 10-kDa acyl-CoA-binding protein ACBP6 enhances freezing tolerance. — Plant Physiol. 148: 304–315, 2008.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Cheng, C., Yun, K.Y., Ressom, H.W., Mohanty, B., Bajic, V.B., Jia, Y., Yun, S.J., De los Reyes, B.G.: An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. — BMC Genom. 18: 175, 2007.

    Article  CAS  Google Scholar 

  24. Chinnusamy, V., Jagendorf, A., Zhu, J.K.: Understanding and improving salt tolerance in plants. — Crop Sci. 45: 437–448, 2005.

    CAS  Article  Google Scholar 

  25. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong.: Ice1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. — Genes Dev. 17: 1043–1054, 2003.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Chinnusamy, V., Schumaker, K., Zhu, J.K.: Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. — J. exp. Bot. 55: 225–236, 2004.

    CAS  PubMed  Article  Google Scholar 

  27. Chinnusamy, V., Zhu, J.K., Sunkar, R.: Gene regulation during cold stress acclimation in plants. — Methods mol. Biol. 639: 39–55, 2010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Chinnusamy, V., Zhu, J., Zhu, J.K.: Cold stress regulation of gene expression in plants. — Trends Plant Sci. 12: 444–451, 2007.

    CAS  PubMed  Article  Google Scholar 

  29. Chowdhury, M.E.K., Choi, B., Cho, B., Kim, J.B., Park, S.U., Natarajan, S., Lim, H., Bae, H.: Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions. — Plant Omics J. 6: 254–262, 2013.

    CAS  Google Scholar 

  30. Cook, D., Fowler, S., Fiehn, O., Thomashow, M.F.: A prominent role for the CBF cold response pathway in configuring the low temperature metabolome of Arabidopsis. — Proc. nat. Acad. Sci. USA 101: 15243–15248, 2004.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Corcuera, L., Cochard, H., Gil-Pelegrin, E., Notivol, E.: Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. — Trees 35: 1033–1042, 2011.

    Article  Google Scholar 

  32. Cruz, R.D., Sperotto, R.A., Cargnelutti, D., Adamski, J.M., Terra, T.F., Fett, J.P.: Avoiding damage and achieving cold tolerance in rice plants. — Food Energ. Secur. 2: 96–119, 2013.

    Article  Google Scholar 

  33. Cuevas, J.C., López-Cobollo, R., Ferrando, A.: Putrescine as a signal to modulate the indispensable ABA increase under cold stress. — Plant Signal. Behav 4: 219–220, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., Liu, J.: A proteomic analysis of cold stress responses in rice seedlings. — Proteomics 5: 3162–3172, 2005.

    CAS  PubMed  Article  Google Scholar 

  35. Dinari, A., Niazi A., Afsharifar, A.R., Ramezani, A.: Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. — Plos ONE 8: 527–557, 2013.

    Article  CAS  Google Scholar 

  36. Distelbarth, H., Nagele, T., Heyer, A.G.: Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. — Plant Biol. 15: 982–990, 2013.

    CAS  PubMed  Article  Google Scholar 

  37. Doherty, C.J., Van Buskirk, H.A., Myers, S.J., Thomashow, M.F.: Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. — Plant Cell 21: 972–984, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, M.K., Yamaguchi-Shinozaki, K.: DREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-saltand cold-responsive gene expression. — Plant J. 33: 751–763, 2003.

    CAS  PubMed  Article  Google Scholar 

  39. Duncan, D.R., Widholm, J.M.: Proline accumulation and its implication in cold tolerance of regenerable maize callus. — Plant Physiol. 83: 703–708, 1987.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Einset, J. Nielsen, E., Connolly, E.L., Bones, A., Sparstad, T., Winge, P., Zhu, J.K. Membrane-trafficking RabA4c involved in the effect of glycinebetaine on recovery from chilling stress in Arabidopsis. - Physiol. Plant. 130: 511–518, 2007.

    CAS  Article  Google Scholar 

  41. Ensminger, I., Busch, F., Huner, N.P.A.: Photostasis and cold acclimation: sensing low temperature through photosynthesis. — Physiol. Plant. 126: 28–44, 2006.

    CAS  Article  Google Scholar 

  42. Fan, W. M., Zhang, H., Zhang Zhang, P.: Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. — Plos ONE 7: e37344, 2012.

    Article  CAS  Google Scholar 

  43. Feng, D., Liu, B., Li, W., He, Y., Qi, K., Wang, H., Wang, J.: Over-expression of a cold-induced plasma membrane protein gene (MpRCI) from plantain enhances low temperature-resistance in transgenic tobacco. - Environ. exp. Bot. 65: 395–402. 2009.

    CAS  Article  Google Scholar 

  44. Feng, X., Zhao, Q., Hao, Y.: The cold-induced basic helix-loophelix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. — BMC Plant Biol. 12: 22, 2012.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Fernandez, A.C., Hamouda, T.B., Iglesias-Guerra, F., Argandona, M., Reina-Bueno M., Nieto J.J., Aouani, M.E,. Vargas, C.: Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. — BMC Microbiol. 10: 192, 2010.

    Article  CAS  Google Scholar 

  46. Folgado, R., Panis, B., Hausman, J.: Differential protein expression in response to abiotic stress in two potato species: Solanum commersonii Dun and Solanum tuberosum L. — Int. J. mol. Sci. 14: 4912–4933, 2013.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Fowler, D.B.: Cold acclimation threshold induction temperatures in cereals. — Crop Sci. 48: 1147–1154, 2008.

    Article  Google Scholar 

  48. Fowler, D.B., Breton, G., Limin, A.E., Mahfoozi, S., Sarhan, F.: Photoperiod and temperature interactions regulate lowtemperature induced gene expression in barley. — Plant Physiol. 127: 1676–1681, 2001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. — Plant Cell 14: 1675–1690, 2002.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Fursova, O.V., Pogorelko, G.V., Tarasov, V.A.: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. — Gene 429: 98–103, 2009.

    CAS  PubMed  Article  Google Scholar 

  51. Gadjev, I., Vanderauwera, S., Gechev, T.S., Laloi, C., Minkov, I.N., Shulaev, V., Apel, K., Inzé, D., Mittler, R., Breusegem, F.V.: Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. — Plant Physiol. 141: 436–445, 2006.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Gammulla, C.G., Pascovici, D., Atwell, B.J., Haynes, P.A.: Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress. — Proteomics 10: 3001–3019, 2010.

    CAS  PubMed  Article  Google Scholar 

  53. Gerhardt, R., Heldt, H.W.: Measurement of subcellular metabolite levels in leaves by fractionation of freezestopped material in non-aqueous media. — Plant Physiol. 75: 542–547, 1984.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Gill, S.S., Tuteja, N.: Polyamines and abiotic stress tolerance in plants. — Plant Signal. Behav. 5: 26–33, 2010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. — Plant Physiol. 124: 1854–1865, 2000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F.: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. — Plant J. 16: 433–443, 1998.

    CAS  PubMed  Article  Google Scholar 

  57. Gilmour, S.J., Fowler, S.G., Thomashow, M..: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. — Plant mol. Biol. 54: 767–781, 2004.

    CAS  PubMed  Article  Google Scholar 

  58. Giri, J.: Glycinebetaine and abiotic stress tolerance in plants. — Plant Signal. Behav. 6: 1746–1751, 2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Gleeson, D., Lelu-Walter, M., Parkinson, M.: Influence of exogenous L-proline on embryogenic cultures of larch (Larix leptoeuropaea Dengler), sitka spruce (Picea sitchensis (Bong.) Carr.) and oak (Quercus robur L.) subjected to cold and salt stress. — Ann. Forest Sci. 61: 125–128, 2004.

    CAS  Article  Google Scholar 

  60. Gomes, E., Jakobsen, M.K., Axelsen, K.B., Geisler, M., Palmgreen, M.G.: Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative amino phospholipid translocases. — Plant Cell 12: 2441–2453, 2000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Gorsuch, P.A., Sargeant, A.W., Penfield, S.D., Quick, W.P., Atkin, O.K.: Systemic low temperature signaling in Arabidopsis. — Plant Cell Physiol. 51: 1488–1498, 2010.

    CAS  PubMed  Article  Google Scholar 

  62. Gusta, L., Trischuk, R., Weiser, C.J.: Plant cold acclimation: the role of abscisic acid. - J. Plant Growth Regul. 24: 308–318, 2005.

    CAS  Article  Google Scholar 

  63. Guy, C.L.: Cold acclimation and freezing stress tolerance: role of protein metabolism. — Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 187–223, 1990.

    CAS  Article  Google Scholar 

  64. Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S., Seguin A., Ellis, B.E.: Ancient signals: Comparative genomics of plant MAPK and MAPKK gene families. — Trends Plant Sci. 11: 192–198, 2006.

    CAS  PubMed  Article  Google Scholar 

  65. Hannah, M.A., Heyer, A.G., Hincha, D.K.: A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. — PloS Genet. 1: e26, 2005.

    Article  CAS  Google Scholar 

  66. Hannah, M.A., Wiese, D., Freund, S., Fiehn, O., Heyer, A.G.K., Hincha, D.: Natural genetic variation of freezing tolerance in Arabidopsis. — Plant Physiol. 142: 98–112, 2006.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Hara, M., Terashima, S., Fukaya, T., Kuboi, T.: Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. — Planta 217: 290–298, 2003.

    CAS  PubMed  Google Scholar 

  68. Hayat, S., Hayat, Q., Ahead, A.: Role of proline under changing environments. — Plant Signal. Behav. 7: 1456–1466, 2012.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Heidarvand, L., Maali-Amiri, R.: What happens in plant molecular responses to cold stress. — Acta Physiol. Plant. 32: 419–431, 2010.

    CAS  Article  Google Scholar 

  70. Holmstrom, K., Susanne, S., Abul, M., Tapio, E.P., Bjorn, W.: Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. — J. exp. Bot. 343: 177–185, 2000.

    Article  Google Scholar 

  71. Huang, J., Hirji, R., Adam, L., Rozwadowski, K., Hammerlindl, J., Keller, W., Selvaraj, G.: Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. — Plant Physiol. 122: 747–756, 2000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Huang, J., Sun, S., Xu, D., Lan, H., Sun, H., Wang, Z.: A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). — Plant mol. Biol. 80: 337–350, 2012.

    CAS  PubMed  Article  Google Scholar 

  73. Hummel, I., Bourdais, G., Gouesbet, G., Couee, I., Malmberg, R.L., El-Amrani, A.: Differential gene expression of arginine decarboxylase ADC1 and ADC2 in Arabidopsis thaliana: characterization of transcriptional regulation during seed germination and seedling development. — New Phytol. 163: 519–531, 2004.

    CAS  Article  Google Scholar 

  74. Hurry, V.M., Strand, A., Tobiaeson, M., Gardestrom, P., Quist, O.G.: Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. — Plant Physiol. 109: 697–706, 1995.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Imai, A., Matsuyama, T., Hanzawa, Y.: Spermidine synthase genes are essential for survival of Arabidopsis. — Plant Physiol. 135: 1565–1573, 2004.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Imin, N., Kerim, T., Rolfe, B.G., Weinman, J.J.: Effect of early cold stress on the maturation of rice anthers. — Proteomics 4: 1873–1882, 2004.

    CAS  PubMed  Article  Google Scholar 

  77. Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377–403, 1996.

    CAS  PubMed  Article  Google Scholar 

  78. Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. — Plant Physiol. 127: 910–917, 2001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. — Science 280: 104–106, 1998.

    CAS  PubMed  Article  Google Scholar 

  80. Janmohammadi, M., Enayati, V., Sabaghnia, N.: Impact of cold acclimation, de-acclimation and re-acclimation on carbohydrate content and antioxidant enzyme activities in spring and winter wheat. — Iceland Agr. Sci. 25: 3–11, 2012.

    Google Scholar 

  81. Janska, A., Marsik, P., Zelenkova, S., Ovesna, J.: Cold stress and acclimation: what is important for metabolic adjustment? — Plant Biol. 12: 395–405, 2010.

    CAS  PubMed  Article  Google Scholar 

  82. Jeon, J., Kim, J.: Cold stress signaling networks in Arabidopsis. — Plant Biol. 56: 69–76, 2013.

    CAS  Article  Google Scholar 

  83. Jeong, H.J., Kim, Y.J., Kim, S.H., Kim, Y.H., Lee, I.J., Kim, Y.K., Shin, J.S.: Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense. — Plant Cell Physiol. 52: 2147–2156, 2012.

    Article  CAS  Google Scholar 

  84. Jewell, M.C., Campbell, B.C., Godwin, I.D.: Transgenic plants for abiotic stress resistance. - In: Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C. (ed.): Transgenic Crop Plants. Pp. 67–132. Springer, Berlin - Heidelberg 2010.

    Google Scholar 

  85. Jiang, Q.W., Kiyoharu, O., Ryozo, I.: Two novel mitogenactivated protein signaling components, OsMEK1 and OsMAP1 are involved in a moderate low-temperature signaling pathway in rice. — Plant Physiol. 129: 1880–1891, 2002.

    Article  CAS  Google Scholar 

  86. Jin, W., Dong, J., Hu, Y., Lin, Z., Xu, X., Han, Z.: Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription factors AtDREB1b. — HortScience 44: 35–39, 2009.

    Google Scholar 

  87. Jonak, C., Kieger, S., Ligterink, W., Barker, P.J., Huskisson, N.S., Hirt, H.: Stress signaling in plants: a mitogenactivated protein kinase pathway is activated by cold and drought. — Proc. nat. Acad. Sci. USA 93: 11274–11279, 1996.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Jonytiene, V., Burbulis, N., Kupriene, R., Blinstrubiene, A.: Effect of exogenous proline and de-acclimation treatment on cold tolerance in Brassica napus shoots cultured in vitro. — J. Food Agr. Environ. 10: 327–330, 2012.

    CAS  Google Scholar 

  89. Kalberer, S.R., Wisniewski, M., Arora, R.: Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. — Plant Sci. 171: 3–16, 2006.

    CAS  Article  Google Scholar 

  90. Kamata, T., Uemura, M.: Solute accumulation in heat seedlings during cold acclimation: contribution to increased freezing tolerance. — CryoLetters 25: 311–322, 2004.

    CAS  PubMed  Google Scholar 

  91. Kamran, M., Shahbaz, M., Ashraf, M., Akram, N.A.: Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as pre-sowing seed treatment. — Pak. J. Bot. 41: 621–632, 2009.

    Google Scholar 

  92. Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, R., Guy, C.L.: Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. — Plant J. 50: 967–981, 2007.

    CAS  PubMed  Article  Google Scholar 

  93. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Nat. Biotechnol. 17: 287–291, 1999.

    CAS  PubMed  Article  Google Scholar 

  94. Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. — Plant Cell Physiol. 45: 346–350, 2004.

    CAS  PubMed  Article  Google Scholar 

  95. Kavi Kishor, P.B., Sreenivasulu, N.: Is proline accumulation per se correlated with stress tolerance or is proline homoeostasis a more critical issue? — Plant Cell Environ. 37: 300–311, 2014.

    CAS  PubMed  Article  Google Scholar 

  96. Kawakami, A., Sato, Y., Yoshida, M.: Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. — J. exp. Bot. 59: 793–802, 2008.

    CAS  PubMed  Article  Google Scholar 

  97. Kawamura, Y., Uemura, M.: Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. — Plant J. 36: 141–154, 2003.

    CAS  PubMed  Article  Google Scholar 

  98. Khodakovskaya, M.I., McAvoy, R., Peters, J., Wu, H., Li, Y.: Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. — Planta 223: 1090–1100, 2006.

    CAS  PubMed  Article  Google Scholar 

  99. Kim, J.C., Lee, S.H., Cheong, Y.H., Yoo, C.M., Lee, S.I., Chun, H.J., Yun, D.J., Hong, J.C., Lee, S.Y., Lim, C.O., Cho, M.J.: A novel cold-inducible zinc finger protein from soybean SCOF-1 enhances cold tolerance in transgenic plants. — Plant J. 25: 247–259, 2001.

    CAS  PubMed  Article  Google Scholar 

  100. Kim, M.H., Sasaki, K., Imai, R.: Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. — J. Biol. Chem. 284: 23454–23460, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Klotke, J., Kopka, J., Gatzke, N., Heyer, A.G.: Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation evidence for a role of raffinose in cold acclimation. — Plant Cell Environ. 27: 1395–1404, 2004.

    CAS  Article  Google Scholar 

  102. Knight, H., Veale, E.L., Warren, G.J., Knight, M.R.: The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. — Plant Cell 1: 875–886, 1999.

    Google Scholar 

  103. Kocsy, G., Pal, M., Soltesz, A., Szalai, G., Boldizsar, Á., Kovacs, V., Janda, T.: Low temperature and oxidative stress in cereals. — Acta agron. hung. 59: 169–189, 2011.

    Article  CAS  Google Scholar 

  104. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M., Iba, K.: Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. — Plant Physiol. 105: 601–605, 1994.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Kosová, K., Vitámvás, P., Prášil, I.T.: The role of dehydrins in plant response to cold. — Biol. Plant. 51: 601–617, 2007.

    Article  Google Scholar 

  106. Koster, K.L., Lynch, D.V.: Solute accumulation and compartmentation during the cold acclimation of Puma rye. — Plant Physiol. 98: 108–113, 1992.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Kovacs, Z., Sarkadi, S.L., Szucs, A., Kocsy, G.: Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. — Amino Acids 38: 623–631, 2010.

    CAS  PubMed  Article  Google Scholar 

  108. Kovtun, Y., Chiu, W., Tena, G., Sheen, J.: Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. — Proc. nat. Acad. Sci. USA 97: 2940–2945, 2000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Krasensky, J., Jonak, C.: Drought, salt and temperature stressinduced metabolic rearrangements and regulatory networks. — J. exp. Bot. 63: 1593–1608, 2012.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Kumar, M., Sirhindi, G., Bhardwaj, R., Kumar, S., Jain, G.: Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. — Indian J. Biochem. Biophys. 47: 378–382, 2010.

    CAS  PubMed  Google Scholar 

  111. Kumar, S., Malik, J., Thakur, P., Kaistha, S., Sharma, K.: Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. — Acta Physiol. Plant. 33: 779–787, 2011.

    CAS  Article  Google Scholar 

  112. Kurepin, L.V., Dahal, K.P., Savitch, L.V., Singh, J., Bode, R., Ivanov, A.G., Hurry, V., Huner, N.: Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. — Int. J. mol. Sci. 14: 12729–12763, 2013.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B., Zhu, J.K.: The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. — Genes Dev. 15: 912–924, 2001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Lee, J.H., Johnson, J.V., Talcott, S.T.: Identification of ellagic conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. — J. Agr. Food Chem. 53: 6003–6010, 2005.

    CAS  Article  Google Scholar 

  115. Levitt, J.: Responses of Plants to Environmental Stresses. - Academic Press, New York 1980.

    Google Scholar 

  116. Li, H.J., Yang, A.F., Zhang, X.C., Gao, F., Zhang, J.R.: Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. — Plant Cell Tissue Organ Cult. 89: 37–48, 2007.

    CAS  Article  Google Scholar 

  117. Li, H.W., Zang, B.S., Deng, X.W., Wang, X.P.: Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. — Planta 234: 1007–1018, 2011.

    CAS  PubMed  Article  Google Scholar 

  118. Lissarre, M., Ohta, M., Sato, A., Miura, K.: Cold-responsive gene regulation during cold acclimation in plants. — Plant Signal Behav. 5: 948–952, 2010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi Shinozaki, K., Shinozaki, K.: Two transcription factors DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression respectively in Arabidopsis. — Plant Cell 10: 1391–1406, 1998.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. Ma, Q., Dai, X., Xu, Y., Guo, J., Liu, Y., Chen, N., Xiao, J., Zhang, D., Xu, Z., Zhang, X., Chong, K.: Enhanced tolerance to chilling stress in OSMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. — Plant Physiol. 150: 244–256, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Mahajan, S., Tuteja, N.: Cold, salinity and drought stresses: an overview. — Arch. Biochem. Biophys. 444: 139–158, 2005.

    CAS  PubMed  Article  Google Scholar 

  122. Maruyama, K., Takeda, M., Kidokoro, S.: Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. — Plant Physiol. 150: 1972–1980, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Mattheis, J.P., Kctchie, D.O.: Changes in parameters of the plasmalemma ATPase during cold acclimation of apple (Malus domestica) tree bark tissues. — Physiol. Plant. 78: 616–622, 1990.

    CAS  Article  Google Scholar 

  124. McKersie, B.D., Bowley, S.R.: Active oxygen and freezing tolerance in transgenic plants. - In: Li, P.H., Chen, T.H.H. (ed.): Plant Cold Hardiness. Pp. 203–214. Plenum Press, New York 1997.

    Google Scholar 

  125. Medina, J.R., Salinas, C.J.: Developmental and stress regulation of RCI2A and RCI2B two cold inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. — Plant Physiol. 125: 1655–1666, 2001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Mickelbart, M.V., Chapman, P., Collier-Christian, L.: Endogenous levels and exogenous application of glycinebetaine to grapevines. — Sci Hort. 111: 7–16, 2006.

    CAS  Article  Google Scholar 

  127. Mikołajczyk, M., Awotunde, O.S., Muszyńska, G., Klessig, D.F., Dobrowolska, G.: Osmotic stress induces rapid activation of a salicylic acid induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. — Plant Cell 12: 165–178, 2000.

    PubMed  PubMed Central  Article  Google Scholar 

  128. Mishra, N.S., Tuteja, R., Tuteja, N.: Signaling through MAP kinase networks in plants. — Arch. Biochem. Biophys. 452: 55–68, 2006.

    CAS  PubMed  Article  Google Scholar 

  129. Miura, K., Furumoto, T.: Cold signaling and cold response in plants. — Int. J. mol. Sci. 14: 5312–5337, 2013.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., Hasegawa, P.M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. - Plant Cell 19: 1403–1414, 2007.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi Shinozaki, K.: A gene encoding a mitogen activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. — Proc. nat. Acad. Sci. USA 93: 765–769, 1996.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Mizuno, N., Shitsukawa, N., Hosogi, N., Park, P., Takumi, S., Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. - Plant J. 68: 114–128, 2011.

    CAS  PubMed  Article  Google Scholar 

  133. Moellering, E.R., Muthan, B., Benning, C., Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. - Science 330: 226–228, 2010.

    CAS  PubMed  Article  Google Scholar 

  134. Mollo, L., Martins, M.C.M., Oliveira, V.F., Nievola, C.C., Cassia, R., Figueiredo-Ribeiro, L.: Effects of low temperature on growth and non-structural carbohydrates of the imperial bromeliad Alcantarea imperialis cultured in vitro. — Plant Cell Tissue Organ Cult. 107: 141–149, 2011.

    CAS  Article  Google Scholar 

  135. Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, S., Tasaka, Y., Nishida, I.: Genetically engineered alteration in the chilling sensitivity of plants. — Nature 356: 710–713, 1992.

    CAS  Article  Google Scholar 

  136. Nakayama, K., Okawa, K., Kakizaki, T., Honma, T., Itoh, H., Inaba, T.: Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. — Plant Physiol. 144: 513–523, 2007.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. — FEBS Lett. 461: 205–210, 1999.

    CAS  PubMed  Article  Google Scholar 

  138. Nayyar, H., Chander, K., Kumar, S., Bains, T.: Glycine betaine mitigates cold stress damage in chickpea. — Agron. Sustain. Dev. 25: 381–388, 2005.

    CAS  Article  Google Scholar 

  139. Olien, C.R., Smith, M.N., Ice adhesions in relation to freeze stress. - Plant Physiol. 60: 499–503, 1977.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. Ouellet, F., Vazquez-Tello, A., Sarhan, F.: The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. — FEBS Lett. 423: 324–328, 1998.

    CAS  PubMed  Article  Google Scholar 

  141. Park, E.J., Jeknic, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N., Chen, T.H.: Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. — Plant J. 40: 474–487, 2004.

    CAS  PubMed  Article  Google Scholar 

  142. Park, E.J., Jeknic, Z., Chen, T.H.H.: Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. — Plant Cell Physiol. 47: 706–714, 2006.

    PubMed  Article  CAS  Google Scholar 

  143. Patade, V.Y., Khatri, D., Ahmed, Z.: Cold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. — Springer Plus 2: 117, 2013.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  144. Pathak, R.K., Taj, G., Kumar, A.: Modeling of the MAPK machinery activation in response to various abiotic and biotic stresses in plants by a system biology approach. — Bioinformation 9: 443–449, 2013.

    PubMed  PubMed Central  Article  Google Scholar 

  145. Pennycooke, J.C., Jones, M.L., Stushnoff, C.: Down-regulating α-galactosidase enhances freezing tolerance in transgenic Petunia. — Plant Physiol. 133: 901–909, 2003.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. Pillai, M.A., Akiyama, T.: Differential expression of an Sadenosyl- methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. — Mol. Genet. Genom. 271: 141–149, 2004.

    CAS  Article  Google Scholar 

  147. Pino, M.T., Skinner, J.S., Park, E.J., Jeknic, Z., Hayes, P.M., Thomashow, M.F., Chen, T.H.: Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. — Plant Biotechnol. J. 5: 591–604, 2007.

    CAS  PubMed  Article  Google Scholar 

  148. Pitzschke, A., Schikora, A., Hirt, H.: MAPK cascade signalling networks in plant defence. — Curr. Opin. Plant Biol. 12: 421–426, 2009.

    CAS  PubMed  Article  Google Scholar 

  149. Polisensky, D.H., Braam, J.: Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. — Plant Physiol. 111: 1271–1279, 1996.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Qin, F., Shinozaki, K., Yamaguchi-Shinozaki, K.: Achievements and challenges in understanding plant abiotic stress responses and tolerance. — Plant Cell Physiol. 52: 1569–1582, 2011.

    CAS  PubMed  Article  Google Scholar 

  151. Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K., Yamaguchi-Shinozaki, K.: Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. — Plant Cell Physiol. 45: 1042–1052, 2004.

    CAS  PubMed  Article  Google Scholar 

  152. Racz, I.K.M., Lásztity, D., Veisz, O., Szalai, and D. E., Páld.: Effect of short term and long-term low temperature stress on polyamine biosynthesis in wheat genotypes with varying degrees of frost tolerance. — J. Plant Physiol. 148: 368–373, 1996.

    CAS  Article  Google Scholar 

  153. Rajashekar, C.B., Zhou, H., Marcum, K.B., Prakash, O.: Glycinebetaine accumulation and induction of cold tolerance in strawberry (Fragaria × ananassa Duch.) plants. — Plant Sci. 148: 175–183, 1999.

    CAS  Article  Google Scholar 

  154. Rapacz, M.: Regulation of frost resistance during cold deacclimation and reacclimation in oilseed rape: a possible role of PS II redox state. — Plant Physiol. 115: 236–243, 2002.

    CAS  Article  Google Scholar 

  155. Rasheed, R., Wahid, A., Ashraf, M., Basra, S.M.A.: Role of proline and glycinebetaine in improving chilling stress tolerance in sugarcane buds at sprouting. — Int. J. agr. Biol. 12: 1–8, 2010.

    CAS  Google Scholar 

  156. Robinson, M.J., Cobb, M.H.: Mitogen-activated protein kinase pathways. — Curr. Opin Cell Biol. 9: 180–186, 1997.

    CAS  PubMed  Article  Google Scholar 

  157. Rohde, P., Hincha, D.K., Heyer, A.G.: Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. — Plant J. 38: 790–799, 2004.

    CAS  PubMed  Article  Google Scholar 

  158. Roxas, V.P., Smith, R.K., Jr., Allen, E.R., Allen, R.D.: Overexpression of glutathione S-transferase/ glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. — Nat. Biotechnol. 15: 988–991, 1997.

    CAS  PubMed  Article  Google Scholar 

  159. Sagisaka, S., Matsuda, Y., Okuda, T., Ozeki, S.: Relationship between wintering ability of winter wheat and the extent of depression of carbohydrate reserves: basal metabolic rate under snow determines longevity of plants. — Soil Sci. Plant Nutr. 37: 531–541, 1991.

    CAS  Article  Google Scholar 

  160. Sakamoto, A., Murata, N.: Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. — J. exp. Bot. 51: 81–88, 2000.

    CAS  PubMed  Article  Google Scholar 

  161. Sakamoto, A., Valverde, R., Alia, Chen, T.H., Murata, N.: Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. - Plant J. 22: 449–453. 2000.

    CAS  PubMed  Article  Google Scholar 

  162. Sanchez-Bel, P., Egea, I., Sanchez-Ballesta, M.T., Sevillano, L., Bolarin, M.D.C., Flores, F.B.: Proteome changes in tomato fruits pior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. — Plant Cell Physiol. 53: 470–484, 2012.

    CAS  PubMed  Article  Google Scholar 

  163. Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.B.: Engineering cold stress tolerance in crop plants. — Curr. Genom. 12: 30–43, 2011.

    CAS  Article  Google Scholar 

  164. Sarkar, D., Bhowmik, P.C., Kwon, Y., Shetty, K.: Cold acclimation responses of three cool-season turfgrasses and the role of proline-associated pentose phosphate pathway. — J. amer. Soc. hort. Sci. 134: 210–220, 2009.

    Google Scholar 

  165. Sasaki, H., Ichimura, K., Oda, M.: Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. — Ann. Bot. 78: 365–369, 1996.

    CAS  Article  Google Scholar 

  166. Satoh, R., Nakashima, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: ACTCAT a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. — Plant Physiol. 130: 709–719, 2002.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Schulze, W.X., Schneider, T., Starck, S., Martinoia, E., Trentmann, O.: Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. — Plant J. 69: 529–541, 2012.

    CAS  PubMed  Article  Google Scholar 

  168. Sen Gupta, A., Heinen, J.L., Holady, A.S., Burke, J.J., Allen, R.D.: Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase. — Proc. nat. Acad. Sci. USA 90: 1629–1633, 1993.

    CAS  Article  Google Scholar 

  169. Seo, P.J., Park, M., Park, C.: Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. — Planta 237: 1415–1424, 2013.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. Shane, J.C.: Proline's Function in Cold Stress and Osmoregulation in Carrot Tissue Culture Suspensions. - Thesis, University of New Mexico, Albuquerque 1986.

    Google Scholar 

  171. Sharma, N., Cram, D., Huebert, T., Zhou, N., Parkin, I.A.: Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant’s response to cold stress. — Plant mol. Biol. 63: 171–184, 2007.

    CAS  PubMed  Article  Google Scholar 

  172. Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular response to drought and cold stress. — Curr. Opin. Plant Biol. 7: 161–167, 1996.

    CAS  Google Scholar 

  173. Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene expression and signal transduction in water-stress response. — Plant Physiol. 115: 327–334, 1997.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signaling pathways. — Curr. Opin. Plant Biol. 3: 217–223, 2000.

    CAS  PubMed  Article  Google Scholar 

  175. Shirasawa, K., Takabe, T., Takabe, T., Kishitani, S.: Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. — Ann. Bot. 98: 565–571, 2006.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. Sinha, A.K., Jaggi, M., Tuteja, N.: Mitogen-activated protein kinase signaling in plants under abiotic stress. — Plant Signal. Behav. 6: 196–203, 2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. Smith, A.M., Stitt, M.: Coordination of carbon supply and plant growth. — Plant Cell Environ. 30: 1126–1149, 2007.

    CAS  PubMed  Article  Google Scholar 

  178. Somerville, C.: Direct tests of the role of membrane lipid composition in low temperature induced photoinhibition and chilling sensitivity in plant and cyanobacteria. — Proc. nat. Sci. 84: 739–743, 1995.

    Google Scholar 

  179. Steponkus, P.L., Uemura, M., Webb, M.S.: A contrast of the cryostability of the plasma membrane of winter rye and spring oat. Two species that widely differ in their freezing tolerance and plasma membrane lipid composition. - In: Steponkus, P.L. (ed.): Advances in Low-Temperature Biology. Vol 2. Pp. 211–312. JAI Press, London 1993.

    Google Scholar 

  180. Strand, A., Foyer, C.H., Gustafsson, P., Gardestrom, P., Hurry, V.: Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. — Plant Cell Environ. 26: 523–535, 2003.

    CAS  Article  Google Scholar 

  181. Su, C.F., Wang, Y.C., Hsieh, T.H., Lu, C.A., Tseng, T.H., Yu, S.M.: A novel MYBS3-dependent pathway confers cold tolerance in rice. — Plant Physiol. 153: 145–158, 2010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. Suzuki, N., Mittler, R.: Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. — Physiol. Plant. 126: 45–51, 2006.

    CAS  Article  Google Scholar 

  183. Swaaij, A.C., Jacobsen, E., Feenstra, W.: Effect of cold hardening, wilting and exogenously applied proline on leaf proline content and frost tolerance of several genotypes of solanum. — Physiol. Plant. 64: 230–236, 1985.

    Article  Google Scholar 

  184. Szabados, L., Savoure, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 89-??, 2010.

    CAS  PubMed  Article  Google Scholar 

  185. Tabaei-Aghdaei, S.R., Pearce R.S., Harrison, P.: Sugars regulate cold-induced gene expression and freezing-tolerance in barley cell cultures. — J. exp. Bot. 54: 1565–1575, 2003.

    CAS  PubMed  Article  Google Scholar 

  186. Takagi, T., Nakamura, M., Hayashi, H., Inatsugi, R., Yano, R., Nishida, I.: The leaf-order-dependent enhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold-inducible transcription factors of CBF/DREB1. — Plant Cell Physiol. 44: 922–931, 2003.

    CAS  PubMed  Article  Google Scholar 

  187. Takahashi, D., Li, B., Uemura, M.: Plant plasma membrane proteomics for improving cold tolerance. — Front. Plant Sci. 4: 90, 2013.

    PubMed  PubMed Central  Google Scholar 

  188. Talanova, V.V., Titov, A.F., Topchieva, L.V.: Specific features of ABA-dependent gene expression in spring wheat during cold adaptation. — Doklady Biol. Sci. 438: 165–167, 2011.

    CAS  Article  Google Scholar 

  189. Tamminen, I., Makela, P., Heino, P., Palva, E.T.: Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. — Plant J. 25: 1–8, 2001.

    CAS  PubMed  Article  Google Scholar 

  190. Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J.L., Hirt, H.: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. — Mol. Cell 15: 141–152, 2004.

    CAS  PubMed  Article  Google Scholar 

  191. Thakur, P., Kumar, S., Malik, J.A., Berger, J.D., Nayyar, H.: Cold stress effects on reproductive development in grain crops: an overview. — Environ. exp. Bot. 67: 429–443, 2010.

    CAS  Article  Google Scholar 

  192. Thakur, P., Nayyar, H.: Facing the cold stress by plants in the changing environment: sensing, signaling, and defending mechanisms. - In: Tuteja, N., Gill, S.S. (ed.): Plant Acclimation to Environmental Stress. Pp. 29–69. Springer, New York 2013.

    Google Scholar 

  193. Thomashow, M.F.: Molecular basis of plant cold acclimation: insights gained from studying the cbf cold response pathway. — Plant Physiol. 154: 571–577, 2010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. Thomashow, M.F.: Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.

    CAS  PubMed  Article  Google Scholar 

  195. Thomashow, M.F.: Role of cold-responsive genes in plant freezing tolerance. — Plant Physiol. 118: 1–7, 1998.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  196. Trujillo, L.E., Sotolongo, M., Menendez, C., Ochogava, M.E., Coll, Y., Hernandez, I., Borras-Hidalgo, O., Thomma, B.P.H.J., Vera, P., Hernandez, L.: SodERF3 a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. — Plant Cell Physiol. 49: 512–515, 2008.

    CAS  PubMed  Article  Google Scholar 

  197. Uemura, M., Steponkus, L.P.: Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. — Plant Physiol. 114: 1493–1500, 1997.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  198. Uemura, M., Tominaga, Y., Nakagawara, C., Shigematsu, S., Minami, A., Kawamura, Y.: Responses of the plasma membrane to low temperatures. — Physiol. Plant. 126: 81–89, 2006.

    CAS  Article  Google Scholar 

  199. Uemura, M., Yoshida, S.: Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma). — Plant Physiol. 75: 818–826, 1984.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  200. Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., Coraggio, I.: Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. — Plant J. 37: 115–127, 2004.

    CAS  PubMed  Article  Google Scholar 

  201. Vogel, J.T. Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., Thomashow, M.F.: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. — Plant J. 41: 195–211, 2005.

    CAS  PubMed  Article  Google Scholar 

  202. Waditee, R., Bhuiyan, M.N., Rai, V., Aoki, K., Tanaka, Y., Hibino, T., Suzuki, S., Takano, J., Jagendorf, A.T., Takabe, T.: Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. - Proc. nat Acad. Sci. USA 102: 1318–1323. 2005.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. Wang, X.C., Zhao, Q.Y., Ma, C.L., Zhang, Z.H., Cao, H.L, Kong, Y.M., Yue, C., Hao, X.Y., Chen, L., Ma, J.Q., Jin, J.Q., Li, X., Yang, Y.: Global transcriptome profiles of Camellia sinensis during cold acclimation. — BMC Genom. 14: 1–15, 2013.

    Article  CAS  Google Scholar 

  204. Wanner, L., Junttila, O.: Cold-induced freezing tolerance in Arabidopsis. — Plant Physiol. 120: 391–400, 1999.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  205. Warren, G., McKown, R., Marin, A., Teutonico, R.: Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. — Plant Physiol. 111: 1011–1019, 1996.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  206. Weiser, C.J.: Cold resistance and injury in woody plants. — Science 169: 1269–1277, 1970.

    CAS  PubMed  Article  Google Scholar 

  207. Wyn Jones, R.G., Storey, R.: Betaines. - In: Paleg, L.G., Aspinal, D. (ed.): The Physiology and Biochemistry of Drought Resistance in Plants. Pp. 171–204. Academic Press, New York 1981.

    Google Scholar 

  208. Xiao, J., Cheng, H., Li, X., Xiao, J., Xu, C., Wang, S.: Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. — Plant Physiol. 163: 1868–1882, 2013.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  209. Xin, Z., Ajin, M., Junping, C., Robert, L.L., John, B.: Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. — Plant J. 49: 786–799, 2007.

    CAS  PubMed  Article  Google Scholar 

  210. Xing, W., Rajashekar, C.B.: Glycinebetaine involvement in freezing tolerance and water stress is Arabidopsis thaliana. — Environ. exp. Bot. 46: 21–28, 2001.

    CAS  PubMed  Article  Google Scholar 

  211. Xiong, L., Lee, H., Huang, R. Zhu, J.K.: A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. — Plant J. 40: 536–545, 2004.

    CAS  PubMed  Article  Google Scholar 

  212. Xiong, L., Schumaker, K.S., Zhu, J.K.: Cell signaling during cold, drought and salt stresses. — Plant Cell 14: 165–183, 2002.

    Article  CAS  Google Scholar 

  213. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.H.D., Wu, R.: Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. — Plant Physiol. 110: 249–257, 1996.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  214. Xu, J., Tian, Y.S., Peng, R.H., Xiong, A.S., Zhu, B., Jin, X.F., Gao, F., Fu, X.Y., Hou, X.L., Yao, Q.H.: AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. — Planta 231: 1251–1260, 2010.

    CAS  PubMed  Article  Google Scholar 

  215. Xue, G.P.: An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. — Biochim. biophys. Acta 1577: 63–72, 2002.

    CAS  PubMed  Article  Google Scholar 

  216. Xue, G.P.: The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of lowtemperature responsive genes in barley is modulated by temperature. — Plant J. 33: 373–383, 2003.

    CAS  PubMed  Article  Google Scholar 

  217. Yadav, S.K.: Cold stress tolerance mechanisms in plants. A review. — Agron. Sustain. Dev. 30: 515–527, 2010.

    CAS  Article  Google Scholar 

  218. Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. — Annu. Rev. Plant Biol. 57: 781–803, 2006.

    CAS  PubMed  Article  Google Scholar 

  219. Yamazaki, H., Ayabe, K., Ishii, R., Kuriyama, A.: Desiccation and cryopreservation of actively-growing cultured plant cells and protoplasts. — Plant Cell Tissue Organ Cult. 97: 151–158, 2009.

    Article  Google Scholar 

  220. Yan, S.P., Zhang, Q.Y., Tang, Z.C., Su, W.A., Sun, W.N., Comparative proteomic analysis provides new insights into chilling stress responses in rice. - Mol. Cell Proteome 5: 484–496, 2006.

    CAS  Article  Google Scholar 

  221. Yoshikawa, H., Honda, C., Kondo, S.: Effect of lowtemperature stress on abscisic acid, jasmonates, and polyamines in apples. — Plant Growth Regul. 52: 199–206, 2007.

    CAS  Article  Google Scholar 

  222. Zhai, H., Bai, X., Zhu, Y., Li, Y., Cai, H., Ji, W., Ji, Z., Liu, X., Liu, X., Li, J.: A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. — Biochem. biophys. Res. Comm. 394: 1018–1023, 2010.

    CAS  PubMed  Article  Google Scholar 

  223. Zhang, L.X., Lai, J.H., Liang, Z.S., Ashraf, M.: Interactive effects of sudden and gradual drought stress and foliarapplied glycinebetaine on growth, water relations, osmolyte accumulation and antioxidant defence system in two maize cultivars differing in drought tolerance. — J. Agron. Crop Sci. 200: 425–433, 2014.

    CAS  Article  Google Scholar 

  224. Zhang, S., Jiang, H., Peng, S., Korpelainen, H., Li, C.: Sexrelated differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. — J. exp. Bot. 62: 675–686, 2011.

    CAS  PubMed  Article  Google Scholar 

  225. Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y., Chen, J.: Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. — Sci. Hort. 122: 200–208, 2009.

    CAS  Article  Google Scholar 

  226. Zhang, X., Fowler, S.G., Cheng, H., Lou, S.Y., Rhee, Y., Stockinger, E.J., Thomashow, M.F.: Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. — Plant J. 39: 905–919, 2004.

    CAS  PubMed  Article  Google Scholar 

  227. Zhou, J., Wang, J., Shi, K., Xia, X.J., Zhou, Y.H., Yu, J.Q.: Hydrogen peroxide is involved in the cold acclimationinduced chilling tolerance of tomato plants. — Plant Physiol. Biochem. 60: 141–149, 2012.

    CAS  PubMed  Article  Google Scholar 

  228. Zhu, B., Xiong, A.S., Peng, R.H., Xu, J., Jin, X.F., Meng, X.R., Yao, Q.H.: Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. — Mol. Biol. Rep. 37: 961–966, 2010.

    CAS  PubMed  Article  Google Scholar 

  229. Zhu, B., Choi, D.W., Fenton, R., Close, T.J.: Expression of the barley dehydrin multigene family and the development of freezing tolerance. — Mol. gen. Genet. 264: 145–153, 2000.

    CAS  PubMed  Article  Google Scholar 

  230. Zhu, J., Dong, C., Zhu, J.: Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. — Curr. Opin. Plant Biol. 10: 290–295, 2007.

    CAS  PubMed  Article  Google Scholar 

  231. Zhu, J., Verslues, P.E., Zheng, X., Lee, B.H., Zhan, X., Manabe, Y., Sokolchik, I., Zhu, Y., Dong, C.H., Zhu, J., Hasegawa, P.H, Bressan, R.A.: HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. — Proc. nat. Acad. Sci. USA 102: 9966–9971, 2005.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Akram.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

John, R., Anjum, N.A., Sopory, S.K. et al. Some key physiological and molecular processes of cold acclimation. Biol Plant 60, 603–618 (2016). https://doi.org/10.1007/s10535-016-0648-9

Download citation

Additional key words

  • cryoprotectants
  • gene expression
  • glycinebetaine
  • MAPK
  • membrane lipids
  • polyamines
  • proline
  • ROS
  • transcription factors
  • transgenic plants