Abstract
Licorice (Glycyrrhiza glabra L.) is an important medicinal plant accumulating high-value secondary metabolites. Real-time reverse transcription quantitative PCR (RT-qPCR) has become a common method for studying gene expression, and the availability of stable reference genes is a prerequisite to obtain accurate quantification of transcript abundance. Therefore, an experiment was designed to determine appropriate reference genes for gene expression studies in licorice. Based on reports in the literature and the availability of genomic sequences, eight putative reference genes were chosen. Further, the expression stabilities of these genes were evaluated in leaf and root tissues under normal and drought stress conditions using three distinct statistical algorithms including geNorm, NormFinder, and BestKeeper. Among the investigated genes, ubiquitin-conjugating enzyme E2 (UBC2), elongation factor 1 α (EF1), and actin (ACT) under normal conditions and ACT, β-tubulin (BTU), and UBC2 under drought stress conditions were the most stable genes in leaves, whereas BTU, ACT, and UBC2 under normal and drought stress conditions were identified as the most stable genes in roots. Nevertheless, the use of glyceraldehyde-3-phosphate dehydrogenase, F-box protein, and BTU have not been approved as reference genes for RT-qPCR data normalization. The findings in this study highlight the importance of the use of well-validated reference genes to the success of gene expression analysis using RT-qPCR.
Similar content being viewed by others
Abbreviations
- ACT:
-
actin
- BTU:
-
β-tubulin
- Cq:
-
quantification cycle
- CV:
-
coefficient of variation
- EF1:
-
elongation factor 1 α
- FBP:
-
F-box protein
- GAPDH:
-
glyceraldehyde-3-phosphate dehydrogenase
- HIS3:
-
histone H3
- M:
-
expression stability
- RT-qPCR:
-
reverse transcription quantitative polymerase chain reacion
- UBC2:
-
ubiquitin-conjugating enzyme E2
References
Andersen, C.L., Jensen, J.L., Orntoft, T.F.: Normalization of quantitative real-time PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. — Cancer. Res. 64: 5245–5250, 2004.
Asl, M.N., Hosseinzadeh, H.: Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. — Phytother. Res. 22: 709–724, 2008.
Barsalobres-Cavallari, C.F., Severino, F.E., Maluf, M.P., Maia, I.G.: Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. — BMC mol. Biol. 10: 1, 2009.
Bookout, A.L., Cummins, C.L., Mangelsdorf, D.J., Pesolak, J.M., Kramerm, M.F.: High-throughput real-time quantitative reverse-transcription PCR. - Curr. Protocols mol. Biol. 73: 15.8:15.8.1–15.8.28, 2006.
Boratyn, G.M., Camacho, C., Cooper, P.S., Coulouris, G., Fong, A., Ma, N., Madden, T.L., Matten, W.T., McGinnis, S.D., Merezhuk, Y., Raytselis, Y., Sayers, E.W., Tao, T., Ye, J., Zaretskaya, I.: BLAST: a more efficient report with usability improvements. - Nucl.. Acids Res. 41: W29–W33, 2013.
Bustin, S.A., Nolan, T.: Pitfalls of Quantitative real-time reverse-transcription polymerase chain reaction. — J. Biomol. Technol. 15: 155–166, 2004.
Condori, J., Nopo-Olazabal, C., Medrano, G., Medina-Bolivar, F.: Selection of reference genes for qPCR in hairy root cultures of peanut. — BMC Res. Notes 4: 392, 2011.
Cui, S.J., He, Q.L., Chen, Y., Huang, M.R.: Evaluation of suitable reference genes for gene expression studies in Lycoris longituba. — J. Genet. 90: 503–506, 2011.
Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., Scheible, W.R.: Genome wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. — Plant. Physiol. 139: 5–17, 2005.
De Almeida, M.R., Ruedell, C.M., Ricachenevsky, F.K., Sperotto, R.A., Pasquali, G., Fett-Neto A.G.: Reference gene selection for quantitative reverse transcriptionpolymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globules Labill. — BMC. mol. Biol. 11: 73, 2010.
Dheda, K., Huggett, J.F., Chang, J.S., Kim, L.U., Bustin, S.A., Johnson, M.A., Rook, G.A., Zumla, A.: The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. — Anal. Biochem. 344: 141–143, 2005.
Die, J.V., Roman, B., Nadal, S., Gonzalez-Verdejo, C.I.: Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. — Planta 232: 145–153, 2010.
Farajalla, M.R., Gulick, P.J.: The α-tubulin gene family in wheat (Triticum aestivum L.) and differential gene expression during cold acclimation. — Genome. 50: 502–510, 2007.
Gachon, C., Mingam, A., Charrier, B.: Real-time PCR: what relevance to plant studies. — J. exp. Bot. 55: 1445–1454, 2004.
Galli, V., Borowski, J.M., Perin, E.C., Da Silva Messias, R., Labonde, J., Dos Santos Pereira, I., Dos Anjos Silva, S.D., Rombaldi, C.V.: Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. — Gene 554: 205–214, 2015.
Guo, J.L., Ling, H., Wu, Q.B., Xu, L.P., Que, Y.X.: The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. — Sci. Rep. 4: 7042, 2014.
Gutierrez, L., Mauriat, M., Guenin, S., Pelloux, J., Lefevre, J.F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C., Van Wuytswinkel, O.: The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RTPCR) analysis in plants. — Plant. biotechnol. J. 6: 609–618, 2008.
Hansen, U., Seufert, G.: Terpenoid emission from Citrus sinensis (L.) Osbeck under drought stress. — Phys. Chem. Earth. 24: 681–687, 1999.
Hayashi, H., Huang, P., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y,, Kushiro, T., Shibuya, M., Ebizuka, Y.: Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. — Biol. pharm. Bull. 24: 912–916, 2001.
Hayashi, H., Huang, P., Takada, S., Obinata, M., Inoue, K., Shibuya, M., Ebizuka, Y.: Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra. — Biol. Pharm. Bull. 27: 1086–1092, 2004.
Hayashi, H,, Sudo, H.: Economic importance of licorice. — Plant. Biotechnol. 26: 101–104, 2009
Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., Vandesompele, J.: - qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. - Genome. Biol. 8: R19, 2007.
Hoenemann, C., Hohe, A.: Selection of reference genes for normalization of quantitative real-time PCR in cell cultures of Cyclamen persicum. — Electron. J. Biotechnol. 14: 12–13, 2011.
Hu, R., Fan, C., Li, H., Zhang, Q., Fu, Y.F. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. - BMC mol. Biol. 10: 93, 2009.
Huis, R., Hawkins, S., Neutelings, G.: Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). — BMC Plant. Biol. 10: 71, 2010.
Janska, A., Hodek, J., Svoboda, P., Zamecnik, J., Prasil, I.T., Vlasakova, E., Milella, L., Ovesna, J.: The choice of reference gene set for assessing gene expression in barley (Hordeum vulgare L.) under low temperature and drought stress. — Mol. Genet. Genomics 288: 639649, 2013.
Jarosova, J., Kundu, J.: Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. — BMC Plant. Biol. 10: 146–154, 2010.
Karlen, Y., Mcnair, A., Perseguers, S., Mazza, C., Mermod, N.: Statistical significance of quantitative PCR. — BMC Bioinformatics. 8: 131, 2007.
Kozera, B., Rapacz, M.: Reference genes in real-time PCR. — J. appl. Genet. 54: 391–406, 2013.
Le, D.T., Aldrich, D.L., Valliyodan, B., Watanabe, Y., Ha, C.V., Nishiyama, R., Guttikonda, S.K., Quach, T.N., Gutierrez-Gonzalez, J.J., Tran, L.S., Nguyen, H.T.: Evaluation of candidate reference genes for normalization of quantitative rt-pcr in soybean tissues under various abiotic stress conditions. — PloS ONE 7: e46487, 2012.
Long, X.Y., Wang, J.R., Ouellet, T., Rocheleau, H., Wei, Y.M., Pu, Z.E., Jiang, Q.T., Lan, X.J., Zheng, Y.L.: Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. — Plant. mol. Biol. 74: 307–311, 2010.
Luo, H., Chen, S., Wan, H.J., Chen, F., Gu, C., Liu, Z.: Candidate reference genes for gene expression studies in water lily. — Anal. Biochem. 404: 100–102, 2010.
Marino, E.R., Borges, A.A., Perez, A.B., Perez, J.A.: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. — BMC Plant. Biol. 8: 131, 2008.
Marum, L., Miguel, A., Ricardo, C.P., Miguel, C.: Reference gene selection for quantitative real-time PCR normalization in Quercus suber. — PloS ONE 7: e35113, 2012.
McDowell, J.M., Huang, S., McKinney, E.C., An. Y.Q., Meagher, R.B.: Structure and evolution of the actin gene family in Arabidopsis thaliana. — Genetics. 142: 587–602, 1996.
Obolentseva, G.V., Litvinenko, V.I., Ammosov, A.S.: Pharmacological and therapeutic properties of licorice preparations (a review). — Pharm. Chem. J. 33: 24–31, 1999.
Paolacci, A.R., Tanzarella, O.A., Porceddu, E., Ciaffi, M.: Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. — BMC mol. Biol. 10: 11, 2009.
Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR. — Nucl. Acids Res. 29: 2002–2007, 2001.
Pfaffl, M.W.: Quantification strategies in real-time PCR. - In: Bustin, S.A. (ed.): The Real-Time PCR Encyclopedia A–Z of Quantitative PCR. Pp. 87–120. International University Line, La Jolla 2004.
Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P.: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper excel-based tool using pair-wise correlations. — Biotechnol. Lett. 26: 509–515, 2004.
Piotr, C., Sacchi, N.: The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. — Nat. Protocols 1: 581–585, 2006.
Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A.: Guideline to reference gene selection for quantitative real-time PCR. — Biochem. biophys. Res. Commun. 313: 856–862, 2004.
Rebouças, E.D.L., Costa, J.J.D.N., Passos, M.J., Passos, J.R.D.S., Hurk, R.V.D., Silva, J.R.V.: Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. — Braz. Arch. Biol. Technol. 56: 143–154, 2013.
Reid, K.E., Olsson, N., Schlosser, J., Peng, F., Lund, S.T.: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RTPCR during berry development. — BMC Plant. Biol. 6: 27, 2006.
Schmidt, G.W., Delaney, S.K.: Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. — Mol. Genet. Genomics 283: 233–241, 2010.
Schmittgen, T.D., Lee, E.J., Jiang, J.: High-throughput real-time PCR Methods. — Mol. Biol. 429: 89–98, 2008.
Selmar, D., Kleinwachter, M.: Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. — Ind. Crop Prod. 42: 558–566, 2013.
Seki, H., Ohyama, K., Sawai, S., Mizutani, M., Ohnishi, T., Sudo, H., Akashi, T., Aoki, T., Saito, K., Muranaka, T.: Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. — Proc. nat. Acad. Sci. USA. 105: 14204–14209, 2008.
Seki, H., Sawai, S., Ohyama, K., Mizutani, M., Ohnishi, T., Sudo, H., Fukushima, E.O., Akashi, T., Aoki, T., Saito, K., Muranaka, T.: Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. — Plant Cell 23: 4112–4123, 2011.
Shabani, L., Ehsanpour, A.A., Esmaeili, A.: Assessment of squalene synthase and beta-amyrin synthase gene expression in licorice roots treated with methyl jasmonate and salicylic acid using real-time qPCR. — Russ. J. Plant. Physiol. 57: 480–484, 2010.
Silva, R.L.O., Silva, M.D., Neto, J.R.C.F., De Nardi, C.H., Chabregas, S.M., Burnquist, W.L., Kah, G., Benko-Iseppon, A.M., Akio Kido, E.: Validation of novel reference genes for reverse transcription quantitative real-time PCR in drought-stressed sugarcane. — Sci. World J. 2014: 357052, 2014.
Tian, C., Jiang, Q., Wang, F., Wang, G.L., Xu, Z.S., Xiong, A.S.: Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. — PLoS ONE 10: e0117569, 2015.
Thellin, O., Zorzi, W., Lakaye, B., Borman, D.B., Coumans, B., Hennen, G., Grisar, T., Igout, A., Heinen, E.: Housekeeping genes as internal standards: use and limits. — J. Biotechnol. 75: 291–295, 1999.
Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G.: Primer3 - new capabilities and interfaces. — Nucl. Acids Res. 40: e115, 2012.
Udvardi, M.K., Czechowski, T., Scheible, W.R.: Eleven golden rules of quantitative RT-PCR. — Plant. Cell. 7: 1736–1737, 2008.
Vallone, P.M., Butler, J.M.: AutoDimer: a screening tool for primer-dimer and hairpin structures. — Biotechniques 37: 226–231, 2004.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. - Genome. Biol. 3: 0034.1-0034.11, 2002.
Zhang, L., He, L.L., Fu, Q.T., Xu, Z.F.: Selection of reliable reference genes for gene expression studies in the biofuel plant Jatropha curcas using real-time quantitative PCR. — Int. J. mol. Sci. 14: 24338–24354, 2013.
Zhuang, H., Fu, Y., He, W. Wang, L., Wei, Y.: Selection of appropriate reference genes for quantitative real-time PCR in Oxytropis ochrocephala Bunge using transcriptome datasets under abiotic stress treatments. — Front. Plant Sci. 6: 475, 2015.
Zhu, J., Zhang, L., Li, W., Han, S., Yang, W., Qi, L.: Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. - PloS ONE 8: e531968–e53196, 2013.
Author information
Authors and Affiliations
Corresponding author
Additional information
Acknowledgments: This study was financially supported by the University of Kurdistan, Sanandaj, Iran.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Maroufi, A. Selection of reference genes for real-time quantitative PCR analysis of gene expression in Glycyrrhiza glabra under drought stress. Biol Plant 60, 645–654 (2016). https://doi.org/10.1007/s10535-016-0601-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10535-016-0601-y