Biologia Plantarum

, Volume 60, Issue 2, pp 269–278 | Cite as

Characterization of S-adenosylmethionine synthetases in soybean under flooding and drought stresses

Original papers

Abstract

Soybean is stress-sensitive crop that exhibits markedly reduced growth under flooding and drought conditions. Three S-adenosylmethionine synthetases (SAMs) proteins were identified as flooding and drought responsive proteins in soybean using a proteomic technique. To better understand the role of these SAMs proteins in soybean under flooding and drought stresses, temporal, organ, and stress specificities were examined at mRNA and enzyme activity levels. The activity of SAMs decreased in response to the flooding, however, it was not significantly changed by NaCl, cold, gibberellic acid, and calcium in soybean roots. The activity of SAMs was induced in roots and hypocotyls under drought. The mRNA expression of the S-adenosylmethionine synthetase (SAMs) family was down-regulated in root tips and roots under the flooding and the drought, and SAMs 1 and SAMs 2 were down-regulated in roots under both stresses. A gene 1-aminocyclopropane-1-carboxylate synthase was up-regulated in root tips, roots, and hypocotyls under drought, however, it was not changed in root tips and roots under the flooding. In addition, 1-aminocyclopropane-1-carboxylate oxidase was induced in root tips under flooding and drought. These results suggest that SAMs was involved in the response to the flooding and drought and it might affect ethylene biosynthesis in soybean.

Additional key words

1-aminocyclopropane-1-carboxylate synthase 1-aminocyclopropane-1-carboxylate oxidase 

Abbreviations

ACC

1-aminocyclopropane-1-carboxylic acid

GA

gibberellic acid

RT-qPCR

reverse transcription-quantitative polymerase chain reaction

SAM

S-adenosylmethionine

SAMs

S-adenosylmethionine synthetase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2016_586_MOESM1_ESM.pdf (436 kb)
Supplementary material, approximately 389 KB.

References

  1. Abeles, F.B., Morgan, P.W., Saltveit, M.E., Jr.: Ethylene in Plant Biology. - Academic Press. New York 1992.Google Scholar
  2. Alam, I., Sharmin, S.A., Kim, K.H., Yang, J.K., Choi, M.S., Lee, B.H.: Proteome analysis of soybean roots subjected to short-term drought stress. — Plant Soil 333: 491–505, 2010.CrossRefGoogle Scholar
  3. Arimura, G., Ozawa, R., Nishioka, T., Boland, W., Koch, T., Kuhnemann, F., Takabayashi, J.: Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. — Plant J. 29: 87–98, 2002.CrossRefPubMedGoogle Scholar
  4. Bairoch, A.: The PROSITE dictionary of sites and patterns in proteins, its current status. — Nucl. Acids Res. 21: 3097–3103, 1993.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bleecker, A.B., Kende, H.: Ethylene: a gaseous signal molecule in plants. — Annu. Rev. cell. dev. Biol. 16: 1–18, 2000.CrossRefPubMedGoogle Scholar
  6. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  7. Chang, S., Puryear, J.D., Dias, D.L., Funkhouser, E.A., Newton, R.J., Cairney, J.: Gene expression under water deficit in loblolly pine (Pinus taeda): isolation and characterization of cDNA clones. — Physiol. Plant. 97: 139–148, 1996.CrossRefGoogle Scholar
  8. Chevenet, F., Brun, C., Banuls, A.-L., Jacq, B., Chisten, R.: TreeDyn: towards dynamic graphics and annotations for analyses of trees. — BMC Bioinformatics 7: 439, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., Liu, J.: A proteomic analysis of cold stress responses in rice seedlings. — Proteomics 5: 3162–3172, 2005.CrossRefPubMedGoogle Scholar
  10. Espartero, J., Pintor-Toro, J.A., Pardo, J.M.: Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. - Plant mol. Biol. 25: 217–227. 1994.CrossRefPubMedGoogle Scholar
  11. Evans, J.M., Malmberg, R.L.: Do polyamines have roles in plant development? — Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 235–269, 1989.CrossRefGoogle Scholar
  12. Fan, R., Wang, H., Wang, Y., Yu, D.: Proteomic analysis of soybean defense response induced by cotton worm (Prodenia litura Fabricius) feeding. — Proteome Sci. 10: 16, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Frederick, J.R., Camp, C.R., Bauer, P.J.: Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. — Crop Sci. 41: 759–763, 2001.CrossRefGoogle Scholar
  14. Fukuda, T., Saito, A., Wasaki, J., Shinano, T., Osaki, M.: Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under pH. — Plant Sci. 172: 1157–1165, 2007.CrossRefGoogle Scholar
  15. Githiri, S.M., Watanabe, S., Harada, K., Takahashi, R.: QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. — Plant Breed. 8: 2058–2069, 2006.Google Scholar
  16. Guo, Z., Tan, J., Zhuo, C., Wang, C., Xiang, B., Wang, Z.: Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. — Plant Biotechnol. J. 12: 601–612, 2014.CrossRefPubMedGoogle Scholar
  17. Hashiguchi, A., Sakata, K., Komatsu, S.: Proteome analysis of early-stage soybean seedlings under flooding stress. — J. Proteome Res. 8: 2058–2069, 2009.CrossRefPubMedGoogle Scholar
  18. Kausar, R., Hossain, Z., Makino, T., Komatsu, S.: Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. — Mol. Biol. Rep. 39: 10573–10579, 2012.CrossRefPubMedGoogle Scholar
  19. Kende, H.: Ethylene biosynthesis. — Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 283–307, 1993.CrossRefGoogle Scholar
  20. Khatoon, A., Rehman, S., Hiraga, S., Makino, T., Komatsu, S.: Organ-specific proteomics analysis for response mechanism in soybean seedlings under flooding stress. — J. Proteomics 75: 5706–5723, 2012.CrossRefPubMedGoogle Scholar
  21. Khan, M.N., Sakata, K., Hiraga, S., Komatsu, S.: Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots. — J. Proteome Res. 13: 5812–5828, 2014.CrossRefPubMedGoogle Scholar
  22. Kim, H.J., Balcezak, T.J., Nathin, S.J., McMullen, H.F., Hansen, D.E.: The use of a spectrometric assay to study the interaction of S-adenosylmethionine synthetase with methionine analogues. — Anal. Biochem. 207: 68–72, 1992.CrossRefPubMedGoogle Scholar
  23. Kim, J.Y.: Identification and functional analysis of S-adenosylmethionine synthetase (HvSAMS) genes in early maturing barley (Hordeum vulgare subsp. vulgare). — Plant Breed. Biotechnol. 1: 178–195, 2013.CrossRefGoogle Scholar
  24. Kim, S.H., Kim, S.H., Palaniyandi, S.A., Yang, S.H., Suh, J.W.: Expression of potato S-adenosyl-L-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants. — Plant Physiol. Biochem. 87: 84–91, 2015.CrossRefPubMedGoogle Scholar
  25. Komatsu, S., Yamamoto, R., Nanjo, Y., Mikami, Y., Yunokawa, H., Sakata, K.: A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. — J. Proteome Res. 8: 4766–4778, 2009.CrossRefPubMedGoogle Scholar
  26. Korte, L.L., Williams, J.H., Specht, J.E., Sorense, R.C.: Irrigation of soybean genotypes during reproductive ontogeny. I. Agronomic responses. — Crop Sci. 23: 521–527, 1983.CrossRefGoogle Scholar
  27. Lamblin, F., Saladin, G., Dehorter, B., Cronier, D., Grenier, E., Lacoux, J., Bruyant, P., Laine, E., Chabbert, B., Girault, F., Monties, B., Morvan, C., David, H., David, A.: Overexpression of a heterologous sam gene encoding S-adenosylmethionine synthetase in flax (Linum usitatissimum) cells: consequences on methylation of lignin precursors and pectins. — Physiol. Plant. 112: 223–232, 2001.CrossRefPubMedGoogle Scholar
  28. Li, X.D., Xia, B., Wang, R., Xu, S., Jiang, Y.M., Yu, F.B., Peng F.: Molecular cloning and characterization of S-adenosylmethionine synthetase gene from Lycoris radiata. — Mol. Biol. Rep. 40: 1255–1263, 2013.CrossRefPubMedGoogle Scholar
  29. Lim, C.C., Liu, J.Z., Pua, E.C.: Characterization of S-adenosylmethionine synthetase genes and its expression is associated with ethylene synthesis in mustard (Brassica juncea). — Physiol. Plant. 116: 522–530, 2002.CrossRefGoogle Scholar
  30. Lindroth, A.M., Saarikoski, P., Flygh, G., Clapham, D., Gronroos, R., Thelander, M., Ronne, H., Von Arnold, S.: Two S-adenosylmethionine synthetase-encoding genes differentially expressed using adventitious root development in Pinus contorta. — Plant mol. Biol. 46: 335–346, 2001.CrossRefPubMedGoogle Scholar
  31. Liu, F., Jensen, C.R., Andersen, M.N.: Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. — Field Crops Res. 86: 1–13, 2004.CrossRefGoogle Scholar
  32. Liu, K.: Food use of whole soybeans. - In: Johnson, L.A., White, P.J., Galloway, R., (ed.): Soybeans: Chemistry, Production, Processing, and Utilization. Pp. 441–482. American Oil Chemists’ Society. Urbana 2008.CrossRefGoogle Scholar
  33. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta Delta C(T) method. — Methods 25: 402–408, 2001.CrossRefPubMedGoogle Scholar
  34. Mayne, M.B., Coleman, J.R., Blumwald, E.: Differential expression during drought conditioning of a root-specific S-adenosylmethionine synthetase from jack pine (Pinus banksiana Lamb.) seedlings. — Plant Cell Environ. 19: 958–966, 1996.CrossRefGoogle Scholar
  35. Miao, S., Shi, H., Jin, J., Liu, J., Liu, X., Wang, G.: Effects of short-term drought and flooding on soybean nodulation and yield at key nodulation stage under pot culture. — J. Food Agr. Environ. 10: 819–824, 2012.Google Scholar
  36. Mohammadi, P.P., Moieni, A., Hiraga, S., Komatsu, S.: Organ-specific proteomic analysis of drought-stressed soybean seedlings. — J. Proteomics 75: 1906–1923, 2012.CrossRefPubMedGoogle Scholar
  37. Nanjo, Y., Skultety, L., Asraf, Y., Komatsu, S.: Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. — J. Proteome Res. 9: 3989–4002, 2010.CrossRefPubMedGoogle Scholar
  38. Oh, M.W., Komatsu, S.: Characterization of proteins in soybean roots under flooding and drought stresses. — J. Proteomics 114: 161–181, 2015.CrossRefPubMedGoogle Scholar
  39. Peleman, J., Saito, K., Cottyn, B., Engler, G., Seurinck, J., Van Montagu, M., Inze, D.: Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. — Gene 84: 359–369, 1989a.CrossRefPubMedGoogle Scholar
  40. Peleman, J., Boerjan, W., Engler, G., Seurinck, J., Botterman, J., Alliotte, T., Van Montagu, M., Inze, D.: Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. — Plant Cell 1: 81–93, 1989b.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pulla, P.K., Kim, Y.J., Parvin, S., Shim, J.S., Lee, J.H., Kim, Y.J., In, J.G., Senthil, K.S., Yang, D.C.: Isolation of S-adenosyl-L-methionine synthetase gene from Panax ginseng C. A. Meyer and analysis of its response to abiotic stresses. — Physiol. mol. Biol. Plants 15: 267–275, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ribas-Carbo, M., Taylor, N.L., Giles, L., Busquets, S., Finnegan, P.M., Day, D.A., Lamber, H., Medrano, H., Berry, J.A., Flexas, J.: Effects of water stress on respiration in soybean leaves. — Plant Physiol. 139: 466–473, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Roeder, S., Dreschler, K., Wirtz, M., Cristescu, S.M., Van Harren, F.J., Hell, R., Piechulla, B.: SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. — Plant mol. Biol. 70: 535–546, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rozen, S., Skaletsky, H.J.: Primer3 on the www for general users and for biologist programmers. - In: Misener, S., Krawetz, S.A. (ed.): Bioinformatics Methods and Protocols. Pp. 365–386. Humana Press, Towata 2000.Google Scholar
  45. Russell, D.A., Wong, D.M., Sachs, M.M.: The anaerobic response of soybean. — Plant Physiol. 92: 401–407, 1990.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sallam, A., Scott, H.D.: Effects of prolonged flooding on soybean at the R2 growth stage I. Dry matter and N and P accumulation. — J. Plant Nutr. 10: 567–592, 1987.Google Scholar
  47. Sanchez-Aguayo, I., Rodriguez-Galan, J.M., Garcia, R., Torreblanca, J., Pardo, J.M.: Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthetase in lignifying tissues of tomato plants. — Planta 220: 278–285, 2004.CrossRefPubMedGoogle Scholar
  48. Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, T.U., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abemathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Shoemaker, R.C., Jackson, S.A.: Genome sequence of the palaeopolyploid soybean. — Nature 463: 178–183, 2010.CrossRefPubMedGoogle Scholar
  49. Schroder, G., Eichel, J., Breinig, S., Schroder, J.: Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: molecular and functional characterization. — Plant mol. Biol. 33: 211–222, 1997.CrossRefPubMedGoogle Scholar
  50. Singh, B., Bohra, A., Mishra, S., Joshi, R., Pandey, S.: Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops. — Biol. Plant. 59: 413–428, 2015.CrossRefGoogle Scholar
  51. Sung, F.J.M.: Waterlogging effects on nodule nitrogenase and leaf nitrate reductase activities in soybean. — Field Crops Res. 35: 183–189, 1993.CrossRefGoogle Scholar
  52. Tabor, C.W., Tabor, H.: Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. — Adv. Enzymol. Relat. Areas mol. Biol. 56: 251–282, 1984.PubMedGoogle Scholar
  53. Van Breusegem, F., Dekeyser, R., Giele, J., Van Montagu, M., Caplan, A.: Characterization of a S-adenosylmethionine synthetase gene in rice. — Plant Physiol. 105: 1463–1464, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Van Doorsselaere, J., Gielen, J., Van Montagu, M., Inzé, D.: A cDNA encoding S-adenosyl-L-methionine synthetase from poplar. — Plant Physiol. 102: 1365–1366, 1993.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Van Toai, T.T., Lee, J.D., Goulart, P.F.P., Shannon, J.G., Alves, J.D., Nguyen, H.T., Yu, O., Rahman, M., Islam, R.: Soybean (Glycine max L. Merr.) seed composition response to soil flooding stress. — J. Food Agr. Environ. 10: 795–801, 2012.Google Scholar
  56. Vriezen, W.H., Hulzink, R., Mariani, C., Voesenek, L.A.C.J.: 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. - Plant Physiol. 121: 185–195, 1999.CrossRefGoogle Scholar
  57. Wang, K.L.C., Li, H., Ecker, J.R.: Ethylene biosynthesis and signaling networks. - Plant Cell 14: S131–S151, 2002.PubMedPubMedCentralGoogle Scholar
  58. Witzel, K., Weinder, A., Surabhi, G.-K., Borner, A., Mock, H.-P.: Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. — J. exp. Bot. 60: 3545–3557, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yang, S.F., Hoffman, N.E.: Ethylene biosynthesis and its regulation in higher plants. — Annu. Rev. Plant Physiol. 35: 155–189, 1984.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.National Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan

Personalised recommendations