Skip to main content
Log in

Involvement of polar auxin transport in the inhibition of Arabidopsis seedling growth induced by Stenotrophomonas maltophilia

  • Original papers
  • Published:
Biologia Plantarum

Abstract

A wide range of microorganisms found in the rhizhosphere are able to regulate plant growth and development, but little is known about the mechanism by which epiphytic microbes inhibit plant growth. Here, an epiphytic bacteria Stenotrophomonas maltophilia, named as LZMBW216, were isolated and identified from the potato (Solanum tuberosum L. cv. Da Xi Yang) leaf surface. They could decrease primary root elongation and lateral root numbers in Arabidopsis seedlings. The inhibitory effects of LZMBW216 on plant growth were not due to a reduced indole-3-acetic acid (IAA) content, as exogenously applied IAA did not recover the inhibition. Furthermore, LZMBW216 did not affect the expression of DR5::GUS and CycB1;1::GUS. However, we found that LZMBW216 exhibited little effect on the primary root elongation in the pin2 mutant and on the lateral root numbers in the aux1-7 mutant. Moreover, LZMBW216 decreased expressions of AUX1 and PIN2 proteins. Together, these results suggest that root system architecture alterations caused by LZMBW216 may involve polar auxin transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylic acid

ET:

ethylene

GFP:

green fluorescent protein

IAA:

indole-3-acetic acid

GUS:

ß-glucuronidase

KB:

King’s B medium

MS:

Murashige and Skoog

PCR:

polymerase chain reaction

YFP:

yellow fluorescent protein

References

  • Abanda-Nkpwatt, D., Müsch, M., Tschiersch, J., Boettner, M., Schwab, W.: Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. — J. exp. Bot. 57: 4025–4032, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Alabadí, D., Gil, J., Blázquez, M., García-Martínez, J.: Gibberellins repress photomorphogenesis in darkness. — Plant Physiol. 134: 1050–1057, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alström, S., Burns, R.: Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. — Biol. Fertil. Soils 7: 232–238, 1989.

    Article  Google Scholar 

  • Arase, F., Nishitani, H., Egusa, M., Nishimoto, N., Sakurai, S., Sakamoto, N., Kaminaka, H.: IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. — PloS ONE 7: e43414, 2012.

    Article  Google Scholar 

  • Arkhipova, T.N., Veselov, S.U., Melentiev, A.I., Martynenko, E.V., Kudoyarova, G.R.: Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. — Plant Soil 272: 201–209, 2005.

    Article  CAS  Google Scholar 

  • Badri, D.V., Vivanco, J.M.: Regulation and function of root exudates. — Plant Cell Environ. 32: 666–681, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M.: The role of root exudates in rhizosphere interactions with plants and other organisms. — Annu. Rev. Plant Biol. 57: 233–266, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Blom, D., Fabbri, C., Eberl, L., Weisskopf, L.: Volatilemediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. — Appl. Environ. Microbiol. 77: 1000–1008, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M., Inzé, D.: Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. — Plant Cell 7: 1405–1419, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, R.L., Kazan, K., McGrath, K.C., Maclean, D.J., Manners, J.M.: A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene in Arabidopsis. — Plant Physiol. 132: 1020–1032, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderon Villalobos, L.I., Lee, S., De Oliveira, C., Ivetac, A., Brandt, W., Armitage, L., Sheard, L.B., Tan, X., Parry, G., Mao H.: A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. — Natur. Chem. Biol. 8: 477–485, 2012.

    Article  CAS  Google Scholar 

  • Camehl, I., Sherameti, I., Venus, Y., Bethke, G., Varma, A., Lee, J., Oelmueller, R. Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. - New Phytol. 185: 1062–1073. 2010.

    Article  CAS  PubMed  Google Scholar 

  • Casimiro, I., Marchant, A., Bhalerao, RP., Beeckman, T., Dhooge, S., Swarup, R., Graham, N., Inzé, D., Sandberg, G., Casero, P.J., Bennett, M.: Auxin transport promotes Arabidopsis lateral root initiation. — Plant Cell 13: 843–852, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celenza, J.L., Grisafi, P.L., Fink, G.R.: A pathway for lateral root formation in Arabidopsis thaliana. — Genes Dev. 9: 2131–2142, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Cesarz, S., Fender, A.-C., Beyer, F., Valtanen, K., Pfeiffer, B., Gansert, D., Hertel, D., Polle, A., Daniel, R., Leuschner, C.: Roots from beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) differentially affect soil microorganisms and carbon dynamics. — Soil Biol. Biochem. 61: 23–32, 2013.

    Article  CAS  Google Scholar 

  • Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W.: Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. — Cell 89: 1133–1144, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C., Kwok, S.F., Bleecker, A.B., Meyerowitz, E.M.: Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. — Science 262: 539–544, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Clark, D.G., Gubrium, E.K., Barrett, J.E., Nell, T.A., Klee, H.J.: Root formation in ethylene-insensitive plants. — Plant Physiol. 121: 53–60, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colón-Carmona, A., You, R., Haimovitch-Gal, T., Doerner, P.: Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. — Plant J. 20: 503–508, 1999.

    Article  PubMed  Google Scholar 

  • Contesto, C., Milesi, S., Mantelin, S., Zancarini, A., Desbrosses, G., Varoquaux, F., Bellini, C., Kowalczyk, M., Touraine, B.: The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. — Planta 232: 1455–1470, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo, H.A., Macías-Rodríguez, L., Cortés-Penagos, C., López-Bucio, J.: Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. — Plant Physiol. 149: 1579–1592, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Haeze, W., De Rycke, R., Mathis, R., Goormachtig, S., Pagnotta, S., Verplancke, C., Capoen, W., Holsters, M.: Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. — Proc. nat. Acad. Sci. USA 100: 11789–11794, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dharmasiri, N., Dharmasiri, S., Estelle, M.: The F-box protein TIR1 is an auxin receptor. — Nature 435: 441–445, 2005a.

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jurgens, G., Estelle, M.: Plant development is regulated by a family of auxin receptor F box proteins. — Dev. Cell 9: 109–119, 2005b.

    Article  CAS  PubMed  Google Scholar 

  • Ditengou, F.A., Béguiristain, T., Lapeyrie, F.: Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid. — Planta 211: 722–728, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Dreher, KA., Brown, J., Saw, RE., Callis, J.: The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. — Plant Cell 18: 699–714, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felten, J., Kohler, A., Morin, E., Bhalerao, R.P., Palme, K., Martin, F., Ditengou, F.A., Legué, V.: The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. — Plant Physiol. 151: 1991–2005, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friml, J., Yang, X., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk, P.B., Ljung, K., Sandberg, G.: A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. — Science 306: 862–865, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., Ohme-Takagi, M.: Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. — Plant Cell 12: 393–404, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, H., Syono, K.: Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. — Plant Cell Physiol. 37: 1094–1101, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B.R.: Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. — FEMS Microbiol. Lett. 251: 1–7, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Gray, E.J., Smith, D.L.: Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. — Soil Biol. Biochem. 37: 395–412, 2005.

    Article  CAS  Google Scholar 

  • Guilfoyle, T.J., Hagen, G.: Auxin response factors. — Curr Opin Plant Biol. 10: 453–460, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Hall, A.E., Chen, Q.G., Findell, J.L., Schaller, G.E., Bleecker, A.B.: The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. — Plant Physiol. 121: 291–300, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, D., Ohme-Takagi, M., Sarai, A.: Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element binding factor (ERF domain) in plants. — J. biol. Chem. 273: 26857–26861, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, A.M., Fang, Y., Asad, S., Kapulnik, Y.: The role of phytohormones in plant-microbe symbioses. — Plant Soil 194: 171–184, 1997.

    Article  CAS  Google Scholar 

  • Hua, J., Chang, C., Sun, Q., Meyerowitz, EM.: Ethylene insensitivity conferred by Arabidopsis ERS gene. — Science 269: 1712–1714, 1995a.

    Article  CAS  PubMed  Google Scholar 

  • Hua, J., Meyerowitz, E.M.: Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. — Cell 94: 261–271, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleecker, A.B., Ecker, J.R., Meyerowitz E.M.: EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. — Plant Cell 10: 1321–1332, 1998b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanchenko, M.G., Muday, G.K., Dubrovsky, J.G.: Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. — Plant J. 55: 335–347, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D., Martin, F., Cairney, J.W.G., Anderson, I.C.: The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. — New Phytol. 194: 614–628, 2012.

    Article  PubMed  Google Scholar 

  • Karadeniz, A., Topcuoglu, S.F., Inan, S.: Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. — World J. Microbiol. Biotechnol. 22: 1061–1064, 2006.

    Article  CAS  Google Scholar 

  • Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., Ecker, J.R.: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. — Cell 72: 427–441, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D.R., Negi, S., Sukumar, P., Muday, G.K.: Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. — Development 138: 3485–3495, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Lincoln, C., Britton, J.H., Estelle, M.: Growth and development of the axr1 mutants of Arabidopsis. — Plant Cell 2: 1071–1080, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow, S.E., Brandl, M.T.: Microbiology of the phyllosphere. — Appl. Environ. Microbiol. 69: 1875–1883, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljung K.: Auxin metabolism and homeostasis during plant development. — Development 140: 943–950, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Long, H.H., Sonntag, D.G., Schmidt, D.D., Baldwin, I.T.: The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. - New Phytol. 185: 554–567. 2010.

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio, J., Campos-Cuevas, J.C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L.I., Valencia-Cantero, E. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. - Mol. Plant-Microbe Interact. 20: 207–217, 2007.

    Article  PubMed  Google Scholar 

  • López-Bucio, J., Cruz-Ramírez, A., Herrera-Estrella, L.: The role of nutrient availability in regulating root architecture. — Curr. Opin. Plant. Biol. 6: 280–287, 2003.

    Article  PubMed  Google Scholar 

  • López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M.F., Simpson, J., Herrera-Estrella, L.: Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. — Plant Physiol. 129: 244–256, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meldau, D.G., Long, H.H., Baldwin, I.T.: A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature. — Front. Plant Sci. 3: 1–13, 2012.

    Article  Google Scholar 

  • Misaghi, I., Donndelinger, C.: Endophytic bacteria in symptom-free cotton plants. — Phytopathology 80: 808–811, 1990.

    Article  Google Scholar 

  • Morgan, J.A.W., Bending, G.D., White, P.J.: Biological costs and benefits to plant-microbe interactions in the rhizosphere. — J. exp. Bot. 56: 1729–1739, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Negi, S., Ivanchenko, M.G., Muday, G.K.: Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. — Plant J. 55: 175–187, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta, M., Ohme-Takagi, M., Shinshi, H.: Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. — Plant J. 22: 29–38, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd, G.E.D., Downie, J.A.: Coordinating nodule morphogenesis with rhizobial infection in legumes. — Annu. Rev. Plant Biol. 59: 519–546, 2008.

    Article  CAS  PubMed  Google Scholar 

  • O'Malley, R.C., Rodriguez, F.I., Esch, J.J., Binder, B.M., O'Donnell, P., Klee, H.J., Bleecker, A.B.: Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. — Plant J. 41: 651–659, 2005.

    Article  PubMed  Google Scholar 

  • Perrine-Walker, F.M., Jublanc, E.: The localization of auxin transporters PIN3 and LAX3 during lateral root development in Arabidopsis thaliana. — Biol. Plant. 58: 778–782, 2014.

    Article  CAS  Google Scholar 

  • Persello-Cartieaux, F., David, P., Sarrobert, C., Thibaud, M.C., Achouak, W., Robaglia, C., Nussaume, L.: Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. — Planta 212: 190–198, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Ping, L., Boland, W.: Signals from the underground: bacterial volatiles promote growth in Arabidopsis. — Trends Plant Sci. 9: 263–266, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., Estelle, M.: The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. — Genes Dev. 12: 198–207, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ružicka, K., Ljung, K., Vanneste, S., Podhorská, R., Beeckman, T., Friml, J., Benková, E.: Ethylene regulates root growth through effects on auxin biosynthesis and transportdependent auxin distribution. — Plant Cell 19: 2197–2212, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Wei, H.X., Paré, P.W., Kloepper, J.W.: Bacterial volatiles promote growth in Arabidopsis. — Proc. nat. Acad. Sci. USA 100: 4927–4932, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, C.M., Hu, C.H., Locy, R., Kloepper, J.: Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. — Plant Soil 268: 285–292, 2005.

    Article  CAS  Google Scholar 

  • Sakai, H., Hua, J., Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B., Meyerowitz, E.M.: ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. — Proc. nat. Acad. Sci. USA. 95: 5812–5817, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shkolnik-Inbar, D., Bar-Zvi, D.: ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. — Plant Cell 22: 3560–3573, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slankis, V.: Soil factors influencing formation of mycorrhizae. — Annu. Rev. Phytopathol. 12: 437–457, 1974.

    Article  CAS  Google Scholar 

  • Stepanova, A.N., Hoyt, J.M., Hamilton, A.A., Alonso, J.M.: A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. — Plant Cell 17: 2230–2242, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturz, AV., Christie, B.R., Nowak, J. Bacterial endophytes: potential role in developing sustainable systems of crop production. - Crit. Rev. Plant Sci. 19: 1–30, 2000.

    Article  Google Scholar 

  • Sukumar, P., Legue, V., Vayssieres, A., Martin, F., Tuskan, G.A., Kalluri, U.C.: Involvement of auxin pathways in modulating root architecture during beneficial plantmicroorganism interactions. — Plant Cell Environ. 36: 909–919, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Swarup, K., Benkova, E., Swarup, R., Casimiro, I., Peret, B., Yang, Y., Parry, G., Nielsen, E., De Smet, I., Vanneste, S., Levesque, M.P., Carrier, D., James, N., Calvo, V., Ljung, K., Kramer, E., Roberts, R., Graham, N., Marillonnet, S., Patel, K., Jones, J.D.G., Taylor, C.G., Schachtman, D.P., May, S., Sandberg, G., Benfey, P., Friml, J., Kerr, I., Beeckman, T., Laplaze, L., Bennett, M.J.: The auxin influx carrier LAX3 promotes lateral root emergence. — Natur. Cell Biol. 10: 946–954, 2008.

    Article  CAS  Google Scholar 

  • Tiwari, S,B., Hagen, G., Guilfoyle, T.: The roles of auxin response factor domains in auxin-responsive transcription. — Plant Cell. 15: 533–543, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmasov, T., Murfett, J., Hagen, G., Guilfoyle, T.J.: Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. — Plant Cell 9: 1963–1971, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Zhang, Y., Li, Y., Wang, X., Nan, W., Hu, Y., Zhang, H., Zhao, C., Wang, F., Li, P., Shi, H., Bi, Y.: Endophytic microbes Bacillus sp. LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings. — Plant Cell Rep. 34: 1075–1087, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Weijers, D., Benkova, E., Jager, K.E., Schlereth, A., Hamann, T., Kientz, M., Wilmoth, J.C., Reed, J.W., Jurgens, G.: Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. — EMBO J. 24: 1874–1885, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise, T., Kai, M., Piechulla, B.: Bacterial ammonia causes significant plant growth inhibition. — PloS ONE 8: e63538, 2013.

    Article  Google Scholar 

  • Wilmoth, J.C., Wang, S., Tiwari, S.B., Joshi, A.D., Hagen, G., Guilfoyle, T.J., Alonso, J.M., Ecker, J.R., Reed, J.W.: NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. — Plant J. 43: 118–130, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Woodward, A.W., Bartel, B.: Auxin: regulation, action, and interaction. — Ann. Bot. 95: 707–735, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I., Pieterse, C.: Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. — Plant Physiol. 162: 304–318, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bi.

Additional information

Acknowledgements: This work was supported by the Major State Basic Research Development Program of China (2012CB026105), the National High Technology Research and Development Program (2007AA021401), the National Natural Science Foundation of China (31170225; 31201145), the Foundation of Science and Technology Program of Gansu Province (1107RJYA005), the Scientific research project of Qinghai-Tibetan DC Interconnection Project in State Grid Corporation of China, and the Foundation of Science and Technology Program of Gansu Province (1208RJZA224). The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, Y., Li, Y. et al. Involvement of polar auxin transport in the inhibition of Arabidopsis seedling growth induced by Stenotrophomonas maltophilia . Biol Plant 60, 299–310 (2016). https://doi.org/10.1007/s10535-016-0585-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0585-7

Additional key words

Navigation