Biologia Plantarum

, Volume 60, Issue 2, pp 201–218 | Cite as

Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants

  • D. Easwar Rao
  • K. V. Chaitanya


Crop plants are regularly exposed to an array of abiotic and biotic stresses, among them drought stress is a major environmental factor that shows adverse effects on plant growth and productivity. Because of this these factors are considered as hazardous for crop production. Drought stress elicits a plethora of responses in plants resulting in strict amendments in physiological, biochemical, and molecular processes. Photosynthesis is the most fundamental physiological process affected by drought due to a reduction in the CO2 assimilation rate and disruption of primary photosynthetic reactions and pigments. Drought also expedites the generation of reactive oxygen species (ROS), triggering a cascade of antioxidative defense mechanisms, and affects many other metabolic processes as well as affecting gene expression. Details of the drought stress-induced changes, particularly in crop plants, are discussed in this review, with the major points: 1) leaf water potentials and water use efficiency in plants under drought stress; 2) increased production of ROS under drought leading to oxidative stress in plants and the role of ROS as signaling molecules; 3) molecular responses that lead to the enhanced expression of stress-inducible genes; 4) the decrease in photosynthesis leading to the decreased amount of assimilates, growth, and yield; 5) the antioxidant defense mechanisms comprising of enzymatic and non-enzymatic antioxidants and the other protective mechanisms; 6) progress made in identifying the drought stress tolerance mechanisms; 7) the production of transgenic crop plants with enhanced tolerance to drought stress.

Additional key words

abiotic stresses antioxidants chlorophyll net photosynthetic rate osmolytes PEPC ROS RuBPC water use efficiency 



ascorbic acid


abscisic acid


ascorbate peroxidase


zinc finger domain


dehydration-responsive element binding


deeper rooting


glycine betaine


glutathione reductase


gibberellic-acid insensitive repressor




glutathione disulfide


late embryogenesis abundant




monodehydroascorbate reductase




nicotinamide adenine dinucleotide phosphate malic enzyme


net assimilation rate


9-cis-epoxycarotenoid dioxygenase


natriuretic peptide receptor


pentose carbon reduction


phosphoenolpyruvare carboxylase


phosphopyruvate dikinase




reactive oxygen species


relative water content


superoxide dismutase


sucrose phosphate synthase


salt tolerant zinc finger protein


transcription factor with conserved sequence


water use efficiency




zinc transporter


zinc finger proteins


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) functions as transcriptional activators in abscisic acid signaling. — Plant Cell 15: 63–78, 2003.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adriano, S., Scopa, A., Nuzzaci, M., Vitti, A.: Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. — Int. J. mol. Sci. 16: 13561–13578, 2015.CrossRefGoogle Scholar
  3. Ahmad, F., Rahmatullah, A.T., Maqsood, A.M., Tahir, M.A., Kanwal, S.: Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. — Emir. J. Food Agr. 19: 1–7, 2007.CrossRefGoogle Scholar
  4. Ahmad, P., Sarwat, M., Sharma, S.: Reactive oxygen species, antioxidants and signaling in plants. — J. Plant Biol. 51: 167–173, 2008.CrossRefGoogle Scholar
  5. Alexandersson, E., Fraysse, L., Sjövall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., Johanson, U., Kjellbom, P.: Whole gene family expression and drought stress regulation of aquaporins. — Plant. mol. Biol. 59: 469–484, 2005.PubMedCrossRefGoogle Scholar
  6. Allen, R.D., Webb, R.P., Schake, S.A.: Use of transgenic plants to study antioxidant defenses. — Free Radical Biol. Med. 23: 473–479, 1997.CrossRefGoogle Scholar
  7. Apel, H., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant. Biol. 55: 373–399, 2004.PubMedCrossRefGoogle Scholar
  8. Armin, S.M., Avat, S., Pessarakli, M.: Reactive oxygen species (ROS) generation and detoxifying in plants. — J. Plant Nutr. 37: 1573–1585, 2014.CrossRefGoogle Scholar
  9. Arora, A., Byrem, T.M., Nair, M.G., Strasburg, G.M.: Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. — Arch. Biochem. Biophys. 373: 102–109, 2000.PubMedCrossRefGoogle Scholar
  10. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.PubMedCrossRefGoogle Scholar
  11. Ashraf, M., Harris, P.J.C.: Photosynthesis under stressful environments: an overview. — Photosynthetica 51: 163–190, 2013.CrossRefGoogle Scholar
  12. Assefa, Y., Staggenborg, S.A., Prasad, V.P.V.: Grain sorghum water requirement and responses to drought stress: A review. - Crop Manage. Online 9: doi: 10.1094/CM-2010-1109-01-RV, 2010.Google Scholar
  13. Athar, H., Ashraf, M.: Photosynthesis under drought stress. - In: Pessarakli, M. (ed.) Handbook of Photosynthesis. 2nd Ed. Pp. 793–804. CRC Press, Taylor & Francis Group, New York 2005.Google Scholar
  14. Augé, R.M., Kubiková, E., Moore, J.L.: Foliar dehydration tolerance of mycorrhizal cowpea, soybean and bush bean. — New Phytol. 151: 535–541, 2001.CrossRefGoogle Scholar
  15. Babu, R.C., Zhang, J., Blum, A., Ho, T.H.D., Wu, R., Nguyen, H.T.: HVA1, a lea gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. — Plant Sci. 166: 855–62, 2004.CrossRefGoogle Scholar
  16. Bahieldin, A., Mahfouz, H.T., Eissa, H.F., Saleh, O.M., Ramadan, A.M., Ahmed, I.A., Dyer, W.E., El-Itriby, H.A., Madkour, M.A.: Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. — Physiol. Plant. 123: 421–427, 2005.CrossRefGoogle Scholar
  17. Bartels, D., Phillips, J., Chandler, J.: Desiccation tolerance: gene expression, pathways, and regulation of gene expression. - In: Jenks, M.A., Wood, A.J. (ed.): Plant Desiccation Tolerance. Pp. 115–137. Blackwell, Ames 2007.CrossRefGoogle Scholar
  18. Barthakur, S., Babu, V., Bansal, K.C.: Overexpression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. — J. Plant Biochem. Biotechnol. 10: 31–37, 2001.CrossRefGoogle Scholar
  19. Baum, J.A., Scandalios, J.G.: Developmental expression and intracellular location of superoxide dismutases in maize. — Differentiation 13: 133–140, 1979.CrossRefGoogle Scholar
  20. Berova, M., Zlatev, Z.: Influence of soil drought on growth and biomass partitioning in young bean (Phaseolus vulgaris L.) plants. — Annu. Rep. Bean Improvement Coop. 45: 190–191, 2002.Google Scholar
  21. Blum, A.: Towards a conceptual ABA ideotype in plant breeding for water limited environments. — Funct. Plant Biol. 42: 502–513, 2015.CrossRefGoogle Scholar
  22. Bohnert, H.J., Sheveleva, E.: Plant stress adaptations, making metabolism move. — Curr. Opin. Plant Biol. 1: 267–274, 1998.PubMedCrossRefGoogle Scholar
  23. Boyer, J.S.: Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. — Plant Physiol. 46: 233–235, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Boyer, J.S., James, R.A., Munns, R., Condon, T.G., Passioura, B.: Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. — Funct. Plant Biol. 35: 1172–1182, 2008.CrossRefGoogle Scholar
  25. Brossa, R., López-Carbonell, M., Jubany-Mario, T., Alegre, L.: Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. — J. Plant Growth Regul. 30: 322–333, 2011.CrossRefGoogle Scholar
  26. Budak, H., Kantar, M., Kurtoglu, K.Y.: Drought tolerance in modern and wild wheat. — Sci. World J. 2013: 548246–548262, 2013CrossRefGoogle Scholar
  27. Bunnag, S., Pongthai, P.: Selection of rice (Oryza sativa L.) cultivars tolerant to drought stress at the vegetative stage under field conditions. — Amer. J. Plant Sci. 4: 1701–1708, 2013.CrossRefGoogle Scholar
  28. Cannon, R.E., White, J.A., Scandalios, J.G.: Cloning of cDNA for maize superoxide dismutase (SOD-2). — Proc. nat. Acad. Sci. USA 84: 179–183, 1987.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cha, J.Y., Kim, W.Y., Kang, S.B., Kim, J.I., Baek, D., Jung, I.J., Kim, M.R., Li, N., Kim, HJ., Nakajima, M., Asami, T., Sabir, J.S.M., Park, H.C., Lee, S.Y., Bohnert, H.J., Bressan, R.A., Pardo, J.M., Yun, DJ.: A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. — Nat. Commun. 6: 8041, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chastain, C.J., Heck, J.W., Colquhoun, T.A., Voge, D.G., Gu, X.Y.: Posttranslational regulation of pyruvate, orthophosphate dikinase in developing rice (Oryza sativa) seeds. — Planta 224: 924–934, 2006.PubMedCrossRefGoogle Scholar
  31. Chaumont, F., Tyerman, S.D.: Aquaporins: highly regulated channels controlling plant water relations. — Plant Physiol. 164: 1600–1618, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chaves, M.M., Flexas, J., Pinheiro, C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. — Ann. Bot. 103: 551–560, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Checker, V.G., Chhibbar, A.K., Khurana, P.: Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. — Transgenic Res. 21: 939–957, 2012.PubMedCrossRefGoogle Scholar
  34. Chen, T.H.H., Murata, N.: Glycine betaine: an effective protectant against abiotic stress in plants. — Trends Plant Sci. 13: 499–505, 2008.PubMedCrossRefGoogle Scholar
  35. Chen, Z., Gallie, D.R.: Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. — Plant Physiol. 138: 1673–1689, 2005.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cheng, Z.Q., Targolli, J., Huang, X.Q., Wu, R.: Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). — Mol. Breed. 10: 71–82, 2002.CrossRefGoogle Scholar
  37. Cheong, Y.H., Kim, K., Pandey, G.K., Gupta, R., Grant, J.J., Luan, S.: CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. — Plant Cell 15: 1833–1845, 2003.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cho, E.K., Hong, C.B.: Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. — Plant Cell Rep. 25: 349–358, 2006.PubMedCrossRefGoogle Scholar
  39. Cobbett, C.S.: Phytochelatins and their roles in heavy metal detoxification. — Plant Physiol. 123: 825–832, 2000.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Collins, A.: Carotenoids and genomic stability. — Mutat. Res. 475: 21–28, 2001.PubMedCrossRefGoogle Scholar
  41. Cortina, C., Culiáñez-Macià, F.A.: Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. — Plant Sci. 169: 75–82, 2005.CrossRefGoogle Scholar
  42. Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. — Cell. Mol. Life Sci. 57: 779–795, 2000.PubMedCrossRefGoogle Scholar
  43. De Ronde, J.A., Spreeth, M.H., Cress, W.A.: Effect of antisense L-Δ1-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. — Plant Growth Regul. 32: 13–26, 2000.CrossRefGoogle Scholar
  44. Ding, L., Gao, C., Li, Y., Li, Y., Zhu, Y., Xu, G., Shen, Q., Kaldenhoff, R., Kai, L., Guo, S.: The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). — Plant Sci. 234: 14–21, 2015.PubMedCrossRefGoogle Scholar
  45. Dixon, D.P., Lapthorn, A., Edwards, R.: Plant glutathione transferases. - Genome Biol. 3: 3004.1–3004.10, 2002.CrossRefGoogle Scholar
  46. Dong, C., Zheng, X., Li, G., Zhu, H., Zhou, M., Hu, Z.: Molecular cloning and expression of two cytosolic copperzinc superoxide dismutases genes from Nelumbo nucifera. — Appl. Biochem. Biotechnol. 163: 679–691, 2011.PubMedCrossRefGoogle Scholar
  47. Doubnerová, V., Ryšlavá, H.: What can enzymes of C4 photosynthesis do for C3 plants under stress? — Plant Sci. 180: 575–583, 2011.PubMedCrossRefGoogle Scholar
  48. Du, Y.C., Nose, A., Wasano, K., Uchida, Y.: Responses to water stress of enzyme activities and metabolite levels in relation to sucrose and starch synthesis, the Calvin cycle and the C4 pathway in sugarcane (Saccharum sp.) leaves. — Aust. J. Plant Physiol. 25: 253–260, 1998.CrossRefGoogle Scholar
  49. Dubois, M., Skirycz, A., Claeys, H., Maleux, K., Dhondt, S., Van den Bossche, R., De Milde, L., Yoshizumi, T., Matsui, M., Inzé, D.: Ethylene response Factor 6 acts as central regulator of leaf growth under water-limiting conditions in Arabidopsis. — Plant Physiol. 162: 319–332, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Eltayeb, A.E., Kawano, N., Badawi, G.H., Kaminaka, H., Sanekata, T., Shibahara, T., Inanaga, S., Tanaka, K.: Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. — Planta 225: 1255–1264, 2007.PubMedCrossRefGoogle Scholar
  51. Fariduddin, Q., Varshney, P., Yusuf, M., Ali, A., Ahmad, A.: Dissecting the role of glycine betaine in plants under abiotic stress. — Plant Stress 7: 8–18, 2013.Google Scholar
  52. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A.: Plant drought stress: effects, mechanisms and management. — Agron. Sustainable Dev. 29: 185–212, 2009.CrossRefGoogle Scholar
  53. Figueras, M., Pujal, J., Saleh, A., Save, R., Pagès, M., Goday, A.: Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. — Ann. appl. Biol. 144: 251–257, 2004.CrossRefGoogle Scholar
  54. Flexas, J., Bota, J., Loreto, F., Cornic, G., Sharkey, T.D.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. — Plant Biol. 6: 269–279, 2004.PubMedCrossRefGoogle Scholar
  55. Foyer, C.H., Noctor, G.: Oxygen processing in photosynthesis: regulation and signalling. — New Phytol. 146: 359–388, 2000.CrossRefGoogle Scholar
  56. Galau, G.A., Wang, H.Y.C., Hughes, D.W.: Cotton Lea5 and Lea14 encode atypical late embryogenesis abundant proteins. — Plant Physiol. 101: 695–696, 1993.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Galmes, J., Pou, A., Alsina, M.M., Tomàs, M., Medrano, H., Flexas, J.: Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp): relationship with ecophysiological status. — Planta 226: 671–681, 2007.PubMedCrossRefGoogle Scholar
  58. Gao, M., Tao, R., Miura, K., Dandekar, A.M., Sugiura, A.: Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. — Plant Sci. 160: 837–845, 2001.PubMedCrossRefGoogle Scholar
  59. Ghotbi-Ravandi, A.A., Shahbazi, M., Shariati, M., Mulo, P.: Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. — J. Agron. Crop Sci. 200: 403–415, 2014.CrossRefGoogle Scholar
  60. Giovannoni, J.J.: Completing a pathway to plant vitamin C synthesis. — Proc. nat. Acad. Sci. USA 104: 9109–9110, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Giuliani, S., Clarke, J., Kreps, J., Sanguineti, M.C., Salvi, S., Landi, P., Zhu, T., Tuberosa, R.: Microarray analysis of backcrossed-derived lines differing for root-ABA1, a major QTL controlling root characteristics and ABA concentration in maize. - In: Tuberosa, R., Phillips, R.L., Gale, M. (ed.): Proceedings of the International Congress in the Wake of the Double Helix: From the Green Revolution to the Gene Revolution. Pp. 463–490. Avenue Media, Bologna 2005.Google Scholar
  62. Goddijn, O.J., Verwoerd, T.C., Voogd, E., Krutwagen, R.W., De Graaf, P.T., Van Dun, K., Poels, J., Ponstein, A.S., Damm, B., Pen, J.: Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. — Plant Physiol. 113: 181–190, 1997.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Goel, D., Singh, A.K., Yadav, V., Babbar, S.B., Bansa, K.C.: Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). — Protoplasma 245: 133–141, 2010.PubMedCrossRefGoogle Scholar
  64. Goel, D., Singh, A.K., Yadav, V., Babbar, S.B., Murata, N., Bansal, K.C.: Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. — J. Plant Physiol. 168: 1286–1294, 2011.PubMedCrossRefGoogle Scholar
  65. Gomes, D., Agasse, A., Thiébaud, P., Delrot, S., Gerós, H., Chaumont, F.: Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. — Biochim. biophys. Acta 1788: 1213–1228, 2009.PubMedCrossRefGoogle Scholar
  66. Grace, S.G., Logan, B.A.: Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. — Phil. Trans. roy. Soc. London B 355: 1499–1510, 2000.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M.H., Grunwald, D., Macherel, D.: Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. — Plant Physiol. 137: 157–167, 2005.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Grillo, S., Leone, A., Xu, Y., Tucci, M., Francione, R., Hasegawa, P.M., Monti, L., Bressan, R.A.: Control of osmotin gene expression by ABA and osmotic stress in vegetative tissues of wild-type and ABA-deficient mutants of tomato. — Physiol. Plant. 93: 498–504, 1995.CrossRefGoogle Scholar
  69. Guler, N.S., Saglam, A., Demiralay, M., Kadioglu, A.: Apoplastic and symplastic solute concentrations contribute to osmotic adjustment in bean genotypes during drought stress. — Turk. J. Biol. 36: 151–160, 2012.Google Scholar
  70. Guo, P.G., Baum, M., Grando, S., Ceccarelli, S., Bai, G.H., Li, R.H., Von Korff, M., Varshney, R.K., Graner, A., Valkoun, J.: Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. — J. exp. Bot. 60: 3531–3544, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gupta, N., Thind, S.: Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. — J. Agr. Sci. Technol. 17: 75–86, 2015.Google Scholar
  72. Gupta, S.A., Heinen, J.L., Holaday, A.S., Burke, J.J., Allen, R.D.: Increased resistance in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. — Proc. nat. Acad. Sci. USA 90: 1629–1633, 1993.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Halliwell, B.: Oxidative stress and neurodegeneration: where are we now? — J. Neurochem. 97: 1634–1658, 2006.PubMedCrossRefGoogle Scholar
  74. Hancock, J., Desikan, R., Harrison, J., Bright, J., Hooley, R., Neill, S.: Doing the unexpected: proteins involved in hydrogen peroxide perception. — J. exp. Bot. 57: 1711–1718, 2006.PubMedCrossRefGoogle Scholar
  75. Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., Masmoudi, K.: Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. — Plant Signal Behav. 6: 1503–1509, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hare, P.D., Cress, W.A.: Metabolic implications of stress induced proline accumulation in plants. — Plant Growth Regul. 21: 79–102, 1997.CrossRefGoogle Scholar
  77. Hernández, I., Cela, J., Alegre, L., Munne-Bosch, S.: Antioxidant defenses against drought stress. - In: Aroca, R. (ed.): Plant Responses to Drought Stress: from Morphological to Molecular Features. Vol. 1. Pp. 231–258. Springer-Verlag, Berlin - Heidelberg 2012.CrossRefGoogle Scholar
  78. Hu, W., Huang, C., Deng, X., Zhou, S., Chen, L., Li, Y., Wang, C., Ma, Z., Yuan, Q., Wang, Y., Cai, R., Liang, X., Yang, G., He, G.: TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. — Plant Cell Environ. 36: 1449–64, 2013.PubMedCrossRefGoogle Scholar
  79. Huang, Y., Xiao, B., Xiong, L.: Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. — Planta 226: 73–85, 2007.PubMedCrossRefGoogle Scholar
  80. Hussain, S.S., Kayani, M.A., Amjad, M.: Transcription factors as tools to engineer enhanced drought stress tolerance in plants. — Biotechnol. Progr. 27: 297–306, 2011.CrossRefGoogle Scholar
  81. Igamberdiev, A.U., Seregelyes, C., Manach, N., Hill, R.D.: NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley haemoglobin. — Planta 219: 95–102, 2004.PubMedCrossRefGoogle Scholar
  82. Iwata, S., Miyazawa, Y., Fujii, N., Takahashi, H.: MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions. — Ann. Bot. 112: 103–114, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., Panneerselvam, R.: Drought stress in plants: a review on morphological characteristics and pigments composition. — Int. J. agr. Biol. 11: 100–105, 2009.Google Scholar
  84. Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, B.H., Kim, J.K.: Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. — Plant Physiol. 131: 516–524, 2003.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jang, J.Y., Rhee, J.Y., Kim, D.G., Chung, G.C., Lee, J.H., Kang, H.: Ectopic expression of a foreign aquaporin disrupts the natural expression patterns of endogenous aquaporin genes and alters plant responses to different stress conditions. — Plant Cell Physiol. 48: 1331–1339, 2007.PubMedCrossRefGoogle Scholar
  86. Jaspers, P., Kangasjärvi, J.: Reactive oxygen species in abiotic stress signaling. — Physiol. Plant. 138: 405–413, 2010.PubMedCrossRefGoogle Scholar
  87. Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güçlü, J., Vinh, J., Heyes, J., Franck, K.I., Schäffner, A.R., Bouchez, D., Maurel, C.: Role of a single aquaporin isoform in root water uptake. — Plant Cell 15: 509–522, 2003.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Jiang, C., Xu, J., Zhang, H., Zhang, X., Shi, J., Li, M., Ming, F.: A cytosolic class I small heat shock protein, RcHSP17. 8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. — Plant Cell Environ. 32: 1046–1059, 2009.PubMedCrossRefGoogle Scholar
  89. Jun, S.S., Choi, H.J., Lee, H.Y., Hong, Y.N.: Differential protection of photosynthetic capacity in trehalose-and lea protein-producing transgenic plants under abiotic stresses. — J. Plant Biol. 51: 327–336, 2008.CrossRefGoogle Scholar
  90. Kanematsu, S., Asada, K.: Superoxide dismutase. - In: Fukui, T., Soda, K. (ed.): Molecular Aspects of Enzyme Catalysis. Pp. 191–209. Wiley, Weinheim 1994.CrossRefGoogle Scholar
  91. Kannan, N.D., Kulandaivelu, G.: Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. — J. med. Plants Res. 5: 3929–3935, 2011.Google Scholar
  92. Kanneganti, V., Gupta, A.: Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. — Plant mol. Biol. 66: 445–462, 2008.PubMedCrossRefGoogle Scholar
  93. Karuppanapandian, T., Wang, H.W., Prabakaran, N., Jeyalakshmi, K., Kwon, M., Manoharan, K., Kim, W.: 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. - Plant Physiol. Biochem. 49: 168–177, 2011.PubMedCrossRefGoogle Scholar
  94. Kawamitsu, Y., Driscoll, T., Boyer, J.S.: Photosynthesis during desiccation in an intertidal alga and a land plant. — Plant Cell Physiol. 41: 344–353, 2000.PubMedCrossRefGoogle Scholar
  95. Keles, Y., Unyayar, S.: Responses of antioxidant defense system of Helianthus annus to absisic acid under drought and waterlogging. — Acta Physiol. Plant. 26: 149–156, 2004.CrossRefGoogle Scholar
  96. Kishor, K.P.B., Hong, Z., Miao, G.H., Hu, C.A.A., Verma, D.P.S.: Overexpression of [delta]-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. — Plant Physiol. 108: 1387–1394, 1995.PubMedPubMedCentralGoogle Scholar
  97. Kliebenstein, D.J., Dietrich, R.A., Martin, A.C., Last, R.L., Dangl, J.L.: LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. — Mol. Plant Microbe Interact. 12: 1022–1026, 1999.PubMedCrossRefGoogle Scholar
  98. Koffler, B.E., Luschin-Ebengreuth, N., Stabentheiner, E., Müller, M., Zechmann, B.: Compartment specific response of antioxidants to drought stress in Arabidopsis. — Plant Sci. 227: 133–144, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kopriva, S., Rennenberg, H.: Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. — J. exp. Bot. 55: 1831–1842, 2004.PubMedCrossRefGoogle Scholar
  100. Krouma, A.: Plant water relations and photosynthetic activity in three Tunisian chickpea (Cicer arietinum L.) genotypes subjected to drought. — Turk. J. Agr. Forest. 34: 257–264, 2010.Google Scholar
  101. Kumar, R.R., Sharma, S.K., Goswami, S., Singh, K., Gadpayle, K.A., Singh, G.P., Pathak, H., Rai, R.D.: Transcript profiling and biochemical characterization of mitochondrial superoxide dismutase (mtSOD) in wheat (Triticum aestivum) under different exogenous stresses. — Aust. J. Crop Sci. 7: 414–424, 2013.Google Scholar
  102. Lambert, J.D., Elias. R.J.: The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. — Arch. Biochem. Biophys. 501: 65–67, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lawlor, D.W.: Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. — J. exp. Bot. 64: 83–108, 2013.PubMedCrossRefGoogle Scholar
  104. Li, Y-J., Hai, R-L., Du, X-H., Jiang, X-N., Lu, H.: Overexpression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. — Plant Breed. 128: 404–410, 2009.CrossRefGoogle Scholar
  105. Lian, H.L., Yu, X., Ye, Q., Ding, X., Kitagawa, Y., Kwak, S.S., Su, W.A., Tang, Z.C.: The role of aquaporin RWC3 in drought avoidance in rice. — Plant Cell Physiol. 45: 481–489, 2004.PubMedCrossRefGoogle Scholar
  106. Liu, X., Wang, Z., Wang, L., Wu, R., Phillips, J., Deng, X.: LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. — Plant Sci. 176: 90–98, 2009.CrossRefGoogle Scholar
  107. Livingston, D.P., Hincha, D.K., Heyer, A.G.: Fructan and its relationship to abiotic stress tolerance in plants. — Cell. mol. Life Sci. 66: 2007–2023, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lutts, S., Almansouri, M., Kinet, J.M.: Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat. — Plant Sci. 167: 9–18, 2004.CrossRefGoogle Scholar
  109. Maqbool, S.B., Zhong, H., El-Maghraby, Y., Ahmad, A., Chai, B., Wang, W., Sabzikar, R., Sticklen, M.B.: Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. — Theor. appl. Genet. 105: 201–208, 2002.PubMedCrossRefGoogle Scholar
  110. Maroco, J., Rodrigues, M.L., Lopes, C., Chaves, M.M.: Limitations to leaf photosynthesis in grapevine under drought-metabolic and modelling approaches. — Funct. Plant Biol. 29: 451–459, 2002.CrossRefGoogle Scholar
  111. Martiinez, J.P., Silva, H., Ledent, J.F., Pinto, M.: Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). — Europ. J. Agron. 26: 30–38, 2007.CrossRefGoogle Scholar
  112. Maurel, C., Verdoucq, L., Luu, D.T., Santoni, V.: Plant aquaporins: membrane channels with multiple integrated functions. — Annu. Rev. Plant. Biol. 59: 595–624, 2008.PubMedCrossRefGoogle Scholar
  113. McKersie, B.D., Bowley, S.R., Harjanto, E., Leprince, O.: Waterdeficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. — Plant Physiol. 111: 1177–1181, 1996.PubMedPubMedCentralGoogle Scholar
  114. McKersie, B.D., Murnaghan, J., Jones, K.S., Bowley, S.R.: Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. — Plant Physiol. 122: 1427–1437, 2000.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Merewitz, E.B., Gianfagna, T., Huang, B.: Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. — J. exp. Bot. 62: 383–395, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Misra, A.N., Misra, M., Singh, R.: Chlorophyll fluorescence in plant biology. - In: Misra, A.N. (ed.): Biophysics. Pp. 171–192. InTech 2012.CrossRefGoogle Scholar
  117. Mittler, R., Blumwald, E.: The roles of ROS and ABA in systemic acquired acclimation. — Plant Cell 27: 64–70, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Miyake, C., Cao, W.H., Asada, K.: Purification and molecular properties of thylakoid-bound ascorbate peroxidase from spinach chloroplasts. — Plant Cell Physiol. 34: 881–889, 1993.Google Scholar
  119. Moloudi, F., Navabpour, S., Soltanloo, H., Ramazanpour, S.S., Sadeghipour, H.: Catalase and metallothionein genes expression analysis in wheat cultivars under drought stress condition. — J. Plant mol. Breed. 1: 54–68, 2013.Google Scholar
  120. Moons, A., De Keyser, A., Van Montagu, M.: A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. — Gene 191: 197–204, 1997.PubMedCrossRefGoogle Scholar
  121. Most, P., Jutta, P.: Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate. — Molecules 20: 1410–1423, 2015.PubMedCrossRefGoogle Scholar
  122. Mumm, P., Wolf, T., Fromm, J., Rob, M., Roelfsema, G., Marten, I.: Cell type-specific regulation of ion channels within the maize stomatal complex. — Plant Cell Physiol. 52: 1365–1375, 2011.PubMedCrossRefGoogle Scholar
  123. Nakabayashi, R., Mori, T., Saito, K.: Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. — Plant Signal. Behav. 9: e29518, 2014.PubMedCentralCrossRefGoogle Scholar
  124. Naya, L., Ladrera, R., Ramos, J., González, E.M., Arrese-Igor, C., Minchin, F.R., Becana, M.: The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. — Plant Physiol. 144: 1104–1114, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  125. NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P. A., Sarhan, F.: Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. — Plant Physiol. 129: 1368–1381, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Nikinmaa, E., Hölttä, T., Hari, P., Kolari, P., Mäkelä, A., Sevanto, S., Vesala, T.: Assimilate transport in phloem sets conditions for leaf gas exchange. — Plant, Cell Environ. 36: 655–669, 2013.CrossRefGoogle Scholar
  127. Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, M., Kim, Y.K.: Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. — Plant Physiol. 138: 341–351, 2005.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Olien, C.R., Clark, J.L.: Freeze-induced changes in carbohydrates associated with hardiness of barley and rye. — Crop Sci. 35: 496–502, 1995.CrossRefGoogle Scholar
  129. Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S.P.: Response of plants to water stress. — Front. Plant Sci. 5: 1–8, 2014.CrossRefGoogle Scholar
  130. Padmavathi, T.A.V., Rao, D.M.: Differential accumulation of osmolytes in 4 cultivars of peanut (Arachis hypogaea L.) under drought stress. — J. Crop Sci. Biotechnol. 16: 151–159, 2013.CrossRefGoogle Scholar
  131. Pang, C.H., Wang, B.S.: Role of ascorbate peroxidase and glutathione reductase in ascorbate-glutathione cycle and stress tolerance in plants. - In: Anjum, A.N, Chan, M.T., Umar, S. (ed.): Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Pp. 99–113. Springer, Berlin 2010.Google Scholar
  132. Park, B.J., Liu, Z., Kanno, A., Kamey, T.: Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. — Plant Sci. 169: 553–558, 2005a.CrossRefGoogle Scholar
  133. Park, B.J., Liu, Z., Kanno, A., Kamey, T.: Increased tolerance to salt and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. — Plant Growth Regul. 45: 165–171, 2005b.CrossRefGoogle Scholar
  134. Park, S., Li, J., Pittman, J.K., Berkowitz, G.A., Yang, H., Undurraga, S., Morris, J., Hirschi, K.D., Gaxiola, R.A.: Up-regulation of a H+ -pyrophosphatase (H+ -PPase) as a strategy to engineer drought-resistant crop plants. — Proc. nat. Acad. Sci. USA. 102: 18830–18835, 2005.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Park, S.H., Jun, S.S., An, G., Hong, Y.N., Park, M.C.: A comparative study on the protective role of trehalose and LEA proteins against abiotic stresses in transgenic Chinese cabbage (Brassica campestris) overexpressing CaLEA or OtsA. — J. Plant Biol. 46: 277–286, 2003.CrossRefGoogle Scholar
  136. Parkhi, V., Kumar, V., Sunilkumar, G., Campbell, L.M., Singh, N.K., Rathore, K.S.: Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance. — Mol. Breed. 23: 625–639, 2009.CrossRefGoogle Scholar
  137. Payton, P., Allen, R.D., Trolinder, N., Holaday, A.S.: Over-expression of chloroplast-targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L., cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity. — Photosynth. Res. 52: 233–244, 1997.CrossRefGoogle Scholar
  138. Pei, E.Q., Dan, Y.S., Liu, P.Q., Song, Y.C., Wang, T.Y., Li, Y: Effect of drought stress on osmotic adjustment in different maize inbred lines at seedling stage. - J. Plant Genet. Resour. 11: 40–45, 2010.Google Scholar
  139. Peña-Valdivia, C.B., Sánchez-Urdaneta, A.B., Meza, R.J., Juárez, M.J., García-Nava, R., Celis Velázquez, R.: Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L.). — Biol. Res. 43: 417–427, 2010.PubMedCrossRefGoogle Scholar
  140. Peng, Y., Lin, W., Cai, W., Arora, R.: Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. — Planta 226: 729–40, 2007.PubMedCrossRefGoogle Scholar
  141. Porcel, R., Aroca, R., Azcn, R., Ruiz-Lozano, J.M.: PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. — Plant mol. Biol. 60: 389–404, 2006.PubMedCrossRefGoogle Scholar
  142. Praba, M.L., Cairns, J.E., Babu, R.C., Lafitte, H.R.: Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. — J. Agron. Crop. Sci. 195: 30–46, 2009.CrossRefGoogle Scholar
  143. Qiu, Y., Yu, D.: Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. — Environ. exp. Bot. 65: 35–47, 2009.CrossRefGoogle Scholar
  144. Raghavendra, A.S., Gonugunta, V.K., Christmann, A., Grill, E.: ABA perception and signalling. — Trends Plant Sci. 15: 395–401, 2010.PubMedCrossRefGoogle Scholar
  145. Raghothama, K.G., Liu, D., Nelson, D.E., Hasegawa, P.M., Bressan, R.A.: Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter. — Plant mol. Biol. 23: 1117–1128, 1993.PubMedCrossRefGoogle Scholar
  146. Rahdari, P., Hoseini, S.M.: Drought Stress: a review. — Int. J. Agron. Plant Prod. 3: 443–446, 2012.Google Scholar
  147. Ramos, M.L.G., Gordon, A.J., Minchin, F.R., Sprent, J.J., Parsons, R.: Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). — Ann. Bot. 83: 57–63, 1999.CrossRefGoogle Scholar
  148. Rao, D.E., Divya, K., Ramana, G.V., Chaitanya, K.V.: Biochemical and molecular mechanisms that decipher drought stress tolerance in plants. - In: Gupta, R.K., Akhtar, N., Vyas, D. (ed.): Biotechnology: an Overview. Pp. 387–398. Daya Publishing House, New Delhi 2015.Google Scholar
  149. Rauf, S., Sadaqat, H.A.: Effect of osmotic adjustment on root length and dry matter partitioning in sunflower (Helianthus annuus L.) under drought stress. — Acta. agr. scand. 58: 252–260, 2008.Google Scholar
  150. Ravikumar, G., Manimaran, P., Voleti, S.R., Subrahmanyam, D., Sundaram, R.M., Bansal, K.C., Viraktamath, B.C., Balachandran, S.M.: Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. — Transgenic Res. 23: 421–439, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Raynal, M., Gaubier, P., Grellet, F., Delseny, M.: Nucleotide sequence of a radish cDNA clone coding for a late embryogenesis abundant (LEA) protein. — Nucl. Acids Res. 18: 6132, 1990.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Reddie, K.G., Carroll, K.S.: Expanding the functional diversity of proteins through cysteine oxidation. — Curr. Opin. Chem. Biol. 12: 746–754, 2008.PubMedCrossRefGoogle Scholar
  153. Reddy, A.R., Chaitanya, K.V., Vivekanandan, M.: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. — J. Plant Physiol. 161: 1189–1202, 2004.CrossRefGoogle Scholar
  154. Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants. — Annu. Rev. Plant. Physiol. 44: 357–384, 1993.CrossRefGoogle Scholar
  155. Rosa, S.B., Caverzan, A., Teixeira, F.K., Lazzarotto, F., Silveira, J.A., Ferreira-Silva, S.L., Abreu-Neto, J., Margis, R., Margis-Pinheiro, M.: Cytosolic APX knockdown indicates an ambiguous redox responses in rice. — Phytochemistry 71: 548–558, 2010.PubMedCrossRefGoogle Scholar
  156. Rouhier, N., Couturier, J., Jacquot, J.P.: Genome-wide analysis of plant glutaredoxin systems. — J. exp. Bot. 57: 1685–1696, 2006.PubMedCrossRefGoogle Scholar
  157. Saeidnejad, A.H., Rajaei, P.: Antioxidative responses to drought and salinity stress in plants, a comprehensive review. — Int. J. Life Sci. 9: 1–8, 2015.CrossRefGoogle Scholar
  158. Sage, R.F., Sage, T.L., Kocacinar, F.: Photorespiration and the evolution of C4 photosynthesis. — Annu. Rev. Plant Biol. 63: 19–47, 2012.PubMedCrossRefGoogle Scholar
  159. Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis Cys2His2-type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. — Plant Physiol. 136: 2734–2746, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. — Plant Cell 18: 1292–1309, 2006.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sakuraba, Y., Kim, Y.S., Han, S.H., Lee, B.D., Paek, N.C.: The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. — Plant Cell 27: 1771–1787, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Samarah, N.H., Alqudah, A.M., Amayreh, J.A, McAndrews, G.M.: The effect of late-terminal drought stress on yield components of four barley cultivars. — J. Agron. Crop. Sci. 195: 427–441, 2009.CrossRefGoogle Scholar
  163. Sato, Y., Yokoya, S.: Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. — Plant Cell Rep. 27: 329–334, 2008.PubMedCrossRefGoogle Scholar
  164. Schippers, J.H.M., Nguyen, H.M., Lu, D., Schmidt, R., Mueller-Roeber, B.: ROS homeostasis during development: an evolutionary conserved strategy. — Cell Mol. Life Sci. 69: 3245–3257, 2012.PubMedCrossRefGoogle Scholar
  165. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M.: Reactive oxygen species generation, hazards, and defense mechanisms in plants under environmental (abiotic and biotic) stress conditions. - In: Pessarakli, M. (ed.): Handbook of Plant and Crop Physiology. 3rd Ed. Pp. 509–548. CRC Press, Taylor & Francis Group, New York 2014.Google Scholar
  166. Sharma, S., Villamor, J.G., Verslues, P.E.: Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. — Plant Physiol. 157: 292–304, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Shih,, M.D., Lin, S.C., Hsieh, J.S., Tsou, C.H., Chow, T.Y., Lin, T.P., Hsing, Y.I.: Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. — Plant mol. Biol. 56: 689–703, 2004.PubMedCrossRefGoogle Scholar
  168. Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular response to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. — Curr. Opin. Plant Biol. 3: 217–223, 2000.PubMedCrossRefGoogle Scholar
  169. Shou, H., Bordallo, P., Wang, K.: Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. — J. exp. Bot. 55: 1013–1019, 2004.PubMedCrossRefGoogle Scholar
  170. Shridhar, R.J., Vadez, V., Mathur, P.B., Narasu, M.L., Sharma, K.K.: Better root:shoot ratio conferred enhanced harvest index in transgenic groundnut overexpressing the rd29A:DREB1A gene under intermittent drought stress in an outdoor lysimetric dry-down trial. — J. semi-arid tropics Agr. Res. 10: 1–7, 2012.Google Scholar
  171. Siefritz, F., Tyree, M. T., Lovisolo, C., Schubert, A., Kaldenhoff, R.: PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. — Plant Cell 14: 869–876, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Singh, N., Mishra, A., Jha, B.: Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiate confers salt and drought stress tolerance in transgenic tobacco. — Mar. Biotechnol. 16: 321–332, 2014.PubMedCrossRefGoogle Scholar
  173. Singh, N.K., Nelson, D.E., Kuhn, D., Hasegawa, P.M., Bressan, R.A.: Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. — Plant Physiol. 90: 1096–1101, 1989.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.H.D., Qu, R.D.: Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. — Plant Sci. 155: 1–9, 2000.PubMedCrossRefGoogle Scholar
  175. Skirycz, A., Memmi, S., De Bodt, S., Maleux, K., Obata, T., Fernie, A.R., Devreese, B., Inze, D.: A reciprocal 15Nlabeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions. — J. Proteome Res. 10: 1018–1029, 2011.PubMedCrossRefGoogle Scholar
  176. Smirnoff, N., Wheeler, G.L.: Ascorbic acid in plants: biosynthesis and function. — CRC Crit. Rev. Plant. Sci. 19: 267–290, 2000.CrossRefGoogle Scholar
  177. Spollen, W.G., Nelson, C.J.: Response of fructan to water-deficit in growing leaves of tall fescue. — Plant Physiol. 106: 329–336, 1994.PubMedPubMedCentralGoogle Scholar
  178. Stiller, I., Dulai, S., Kondrák, M., Tarnai, R., Szabó, L., Toldi, O., Bánfalvi, Z.: Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. — Planta 227: 299–308, 2008.PubMedCrossRefGoogle Scholar
  179. Sujata, B., Kshitija, S.: Drought stress adaptation: metabolic adjustment and regulation of gene expression. — Plant Breed. 132: 21–32, 2013.CrossRefGoogle Scholar
  180. Sun, W., Bernard, C., Van de Cotte, B., Van Montagu, M., Verbruggen, N.: At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. — Plant J. 27: 407–415, 2001.PubMedCrossRefGoogle Scholar
  181. Sun, W.H., Duan, M., Shu, D.F., Yang, S., Meng, Q.W.: Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. — Plant Cell Rep. 29: 917–926, 2010.PubMedCrossRefGoogle Scholar
  182. Šurbanovski, N., Sargent, D.J., Else, M.A., Simpson, D.W., Zhang, H., Grant, O.M.: Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content. — PLoS ONE 8: e74945, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Szabados, L., Savoure, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 89–97, 2010.PubMedCrossRefGoogle Scholar
  184. Székely, G., Abrahám, E., Cséplö, A., Rigó, G., Zsigmond, L., Csiszár, J., Ayaydin, F., Strizhov, N., Jásik, J., Schmelzer, E., Koncz, C., Szabados, L.: Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. — Plant J. 53: 11–28, 2008.PubMedCrossRefGoogle Scholar
  185. Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., Dong, X.: Plant immunity requires conformational changes of NPR1 via nitrosylation and thioredoxins. — Science 321: 952–956, 2008.PubMedCrossRefGoogle Scholar
  186. Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J.K., Shinozaki, K.: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. — Plant. Physiol. 135: 1697–1709, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Tarczynski, M.C., Jensen, R.G., Bohnert, H.J.: Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. — Proc. nat. Acad. Sci. USA. 89: 2600–2604, 1992.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Tarczynski, M.C., Jensen, R.G., Bohnert, H.J.: Stress protection of transgenic tobacco by production of the osmolyte mannitol. — Science 259: 508–510, 1993.PubMedCrossRefGoogle Scholar
  189. Taylor, L., Nunes-Nesi, A., Parsley, K., Leiss, A., Leach, G., Coates, S., Wingler, A., Fernie, A.R., Hibberd, J.M.: Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. — Plant J. 62: 641–652, 2010.PubMedCrossRefGoogle Scholar
  190. Thomas, J.C., Sepahi, M., Arendall, B., Bohnert, H.J.: Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. — Plant Cell Environ. 18: 801–806, 1995.CrossRefGoogle Scholar
  191. Trujillo, L.E., Menéndez, C., Ochogavía, M.E., Hernández, I., Borrás, O., Rodríguez, R., Coll, Y., Arrieta, J.G., Banguela, A., Ramírez, R., Hernández, L.: Engineering drought and salt tolerance in plants using SodERF3, a novel sugarcane ethylene responsive factor. — Biotecnol. Apl. 2: 168–171, 2009.Google Scholar
  192. Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., Yano, M.: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. — Nat. Genet. 45: 1097–1102, 2013.PubMedCrossRefGoogle Scholar
  193. Ulker, B., Somssich, I.E.: WRKY transcription factors: from DNA binding towards biological function. — Curr. Opin. Plant. Biol. 7: 491–498, 2004.PubMedCrossRefGoogle Scholar
  194. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis basic leucine zipper transcriptional transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. — Proc. nat. Acad. Sci. USA 97: 11632–11637, 2000.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Vaahtera, L., Brosché, M.: More than the sum of its parts - how to achieve a specific transcriptional response to abiotic stress. — Plant Sci. 180: 421–430, 2011.PubMedCrossRefGoogle Scholar
  196. Valluru, R., Van den Ende, W.: Plant fructans in stress environments: emerging concepts and future prospects. — J. exp. Bot. 59: 2905–2916, 2008.PubMedCrossRefGoogle Scholar
  197. Van den Boogaard, Alewijnse, D., Veneklaas E.J., Lambers, H.: Growth and water-use efficiency of ten Triticum aestivum cultivars at different water availability in relation to allocation of biomass. — Plant Cell Environ. 20: 200–210, 1997.CrossRefGoogle Scholar
  198. Vellosillo, T., Vicente, J., Kulasekaran, S., Hamberg, M., Castresana, C.: Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. — Plant Physiol. 154: 444–448, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Venkataraman, S., Schafer, F.Q., Buettner, G.: Detection of lipid radicals using EPR. — Antioxidants Redox Signal. 6: 631–638, 2004.CrossRefGoogle Scholar
  200. Verelst, W., Bertolini, E., De Bodt, S., Vandepoele, K., Demeulenaere, M., Pe, M.E., Inze, D.: Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. — Mol. Plant. 6: 311–322, 2013.PubMedCrossRefGoogle Scholar
  201. Versulues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.K.: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. — Plant J. 45: 523–539, 2006.CrossRefGoogle Scholar
  202. Vinocur, B., Altman, A.: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. — Curr. Opin. Biotechnol. 16: 123–32, 2005.PubMedCrossRefGoogle Scholar
  203. Wang, P., Du, Y., Zhao, X., Miao, Y., Song, C.P.: The MPK6-ERF6-ROSE7/GCC-box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis thaliana. — Plant Physiol. 161: 1392–1408, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Wang, P., Duan, W., Takabayashi, A., Endo, T., Shikanai, T., Ji-Yu Ye., Hualing, M.: Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. — Plant Physiol. 141: 465–474, 2006.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Witcombe, J.R., Hollington, P.A., Howarth, C.J., Reader, S., Steele, K.A.: Breeding for abiotic stresses for sustainable agriculture. — Phil. Trans. roy. Soc. London B 363: 703–716, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Wrzaczek, M., Vainonen, J.P., Gauthier, A., Overmyer, K., Kangasjärvi, J.: Reactive oxygen in abiotic stress perception - from genes to proteins. - In: Shanker, A., Venkateswarlu, B. (ed.): Abiotic Stress Response in Plants - Physiological, Biochemical and Genetic Perspectives. Pp. 27–40. In-Tech, 2011.Google Scholar
  207. Wu, G., Wei, Z.K., Shao, H.B.: The mutual responses of higher plants to environment: physiological and microbiological aspects. — Biointerface 59: 113–119, 2007.CrossRefGoogle Scholar
  208. Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., Toriyama, K.: Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. — Plant Cell Rep. 28: 21–30, 2009PubMedCrossRefGoogle Scholar
  209. Xiao, B., Huang, Y., Tang, N., Xiong, L.: Over-expression of a LEA gene in rice improves drought resistance under the field conditions. — Theor. appl. Genet. 115: 35–46, 2007.PubMedCrossRefGoogle Scholar
  210. Xoconostle-Cazares, B., Ramirez-Ortega, F.A., Flores-Elenes, L., Ruiz-Medrano, R.: Drought tolerance in crop plants. — Amer. J. Plant Physiol. 5: 241–256, 2011.CrossRefGoogle Scholar
  211. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T., Wu, R.: Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. — Plant Physiol. 110: 249–257, 1996.PubMedPubMedCentralGoogle Scholar
  212. Xu, D.Q., Huang, J., Guo, S.Q., Yang, X., Bao, Y.-M., Tang, H.-J., Zhang, H.-S.: Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). — FEBS Lett. 582: 1037–1043, 2008.PubMedCrossRefGoogle Scholar
  213. Xu, Y., Hu, W., Liu, J., Zhang, J., Jia, C., Miao, H., Jin, B.X.Z.: A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. — BMC Plant Biol. 14: 59, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Yamaguchi-Shinozaki, K., Shinozaki, K.: Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. — Trends Plant Sci. 10: 88–94, 2005.PubMedCrossRefGoogle Scholar
  215. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N.: Living with water stress: evolution of osmolyte systems. — Science 217: 1214–1222, 1982.PubMedCrossRefGoogle Scholar
  216. Yang, J., Zhang, J., Wang, Z., Zhu, Q., Liu, L.: Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. — Planta 215: 645–652, 2002.PubMedCrossRefGoogle Scholar
  217. Yang, W.J., Rich, P.J., Axtell, J.D., Wood, K.V., Bonham, C.C., Ejeta, G., Mickelbart, M.V., Rhodes, D.: Genotypic variation for glycine betaine in sorghum. — Crop Sci. 43: 162–169, 2003.CrossRefGoogle Scholar
  218. Yordanov, I., Velikova, V., Tsonev, T.: Plant responses to drought and stress tolerance. - Bulg. J. Plant Physiol. 2003 (Special issue): 187–206, 2003.Google Scholar
  219. Yoshida, T., Mogami, J., Yamaguchi-Shinozaki, K.: Omics approaches toward defining the comprehensive abscisic acid signaling network in plants. — Plant Cell Physiol. 56: 1043–1052, 2015.PubMedCrossRefGoogle Scholar
  220. Zhang, L., Zhao, G., Xia, C., Jia, J., Liu, X., Kong, X.: A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. — J. exp. Bot. 63: 5873–5885, 2012.PubMedCrossRefGoogle Scholar
  221. Zhang, L., Tian, L.H., Zhao, J.F., Song, Y., Zhang, C.J., Guo, Y.: Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. — Plant Physiol. 149: 916–928, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Zhang, X., Wollenweber, B., Jiang, D., Liu, F., Zhao, J.: Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. — J. exp. Bot. 59: 839–848, 2008a.PubMedCrossRefGoogle Scholar
  223. Zhang, Y., Yang, J., Lu, S., Cai, J., Guo, Z.: Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. — J. Plant Growth Regul. 27: 151–158, 2008b.CrossRefGoogle Scholar
  224. Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., Wang, C., Wang, J., He, Y., Yang, G., He, G.: Over-expression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. - PLoS ONE 7: e52439, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Zhu, J.K.: Salt and drought stress signal transduction in plants. — Annu. Rev. Plant Biol. 53: 247–273, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Zlatev, Z., Lidon, F.C.: An overview on drought induced changes in plant growth, water relations and photosynthesis. — Emir. J. Food Agr. 24: 57–72, 2012.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of BiotechnologyGIT, GITAM UniversityVisakhapatnamIndia

Personalised recommendations