Skip to main content

Use of silencing reporter and agroinfiltration transient assays to evaluate the potential of hpRNA construct to induce multiple tospovirus resistance

Abstract

Tospoviruses are devastating plant viruses causing severe economic losses in a diverse range of crops worldwide. Here, we describe the development and evaluation of an RNA interference (RNAi) broad-spectrum virus resistance strategy based on a unique and short hairpin-RNA-generating construct (pNhpRNA). This construct was designed from a region of the nucleocapsid gene (N) of Tomato spotted wilt virus (TSWV) that showed a high sequence identity to the corresponding region in the related species Groundnut ringspot virus (GRSV) and Tomato chlorotic spot virus (TCSV). To test the effectiveness of the pNhpRNA construct, we developed a silencing reporter assay based on three fusion proteins in which the complete viral N gene sequence from each of the three tospoviruses was fused in frame to the green fluorescent protein (GFP) sequence. Co-agroinoculation of these constructs with pNhpRNA into leaves of Nicotiana benthamiana resulted in a strong silencing phenotype determined by GFP decay and suppression of the three N genes at the RNA and protein levels. To test the potential of the pNhpRNA construct to generate virus-resistant plants, we infiltrated the whole shoots of N. benthamiana with pNhpRNA. When these infiltrated plants were mechanically inoculated with the mentioned viruses 100, 70, and 60 % resistance phenotypes to TSWV, GRSV, and TCSV, respectively, were observed. The induction of a broad tospovirus resistance with a simple construct and a minimized off-target effect are the main contributions of pNhpRNA.

This is a preview of subscription content, access via your institution.

Abbreviations

GFP:

green fluorescent protein

GRSV:

Groundnut ringspot virus

hpRNA:

hairpin RNA

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

TCSV:

Tomato chlorotic spot virus

TSWV:

Tomato spotted wilt virus

References

  • Aramburu, J., Marti, M. The occurrence in north-east Spain of a variant of Tomato spotted wilt virus (TSWV) that breaks resistance in tomato (Lycopersicon esculentum) containing the Sw-5 gene. — Plant Pathol. 52: 407–407, 2003.

    Article  Google Scholar 

  • Auer, C., Frederick, R.: Crop improvement using small RNAs: applications and predictive ecological risk assessments. — Trends. Biotechnol. 27: 644–651, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Black, L.L., Hobbs, H.A., Gatti, J. M., Jr.: Tomato spotted wilt virus resistance in Capsicum chinense PI 152225 and 159236. — Plant Dis. 75: 863–866, 1991.

    Article  Google Scholar 

  • Boiteux, L.S.: Allelic relationships between genes for resistance to Tomato spotted wilt tospovirus in Capsicum chinense. — Theor. appl. Genet. 90: 146–149, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Bucher, E., Lohuis, D., Van Poppel, P.M.J., Geerts-Dimitriadou, C., Goldbach, R., Prins, M.: Multiple virus resistance at a high frequency using a single transgene construct. — J. gen. Virol. 87: 3697–3701, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Canady, M.A., Stevens, M.R., Barineau, M.S., Scott, J.W.: Tomato spotted wilt virus (TSWV) resistance in tomato derived from Lycopersicon chilense Dun. LA 1938. — Euphytica 117: 19–25, 2001.

    Article  Google Scholar 

  • Chandelier, A., Planchon, V., Oger, R.: Determination of cycle cut off in real-time PCR for the detection of regulated plant pathogens. — EPPO Bull. 40: 52–58, 2010.

    Article  Google Scholar 

  • Ciuffo, M., Finetti-Sialer, M.M., Gallitelli, D., Turina, M.: First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw5 resistance gene. — Plant Pathol. 54: 564, 2005.

    Article  Google Scholar 

  • De la Iglesia, F., Martínez, F., Hillung J., Cuevas, J.M., Gerrish, P.J., Daròs, J.-A., Elena, S.F.: Luria-delbruck estimation of Turnip mosaic virus mutation rate in vivo. — J. Virol. 86: 3386–3388, 2012.

    PubMed Central  Article  PubMed  Google Scholar 

  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W.: InfoStat version. — Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina (URL http://www.infostat.com.ar), 2011.

    Google Scholar 

  • Dietzgen, R.G., Mitter, N.: Transgenic gene silencing strategies for virus control. — Aust. Plant Pathol. 35: 605–618, 2006.

    Article  CAS  Google Scholar 

  • Duan, C., Wang, C., Fang, R., Guo, H.: Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. — J. Virol. 82: 11084–11095, 2008.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Duan, C.-G., Wang, C.-H., Guo, H.-S.: Application of RNA silencing to plant disease resistance. — Silence 3: 5, 2012.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Eamens, A., Wang, M.-B., Smith, N., Waterhouse, P.M.: RNA silencing in plants: yesterday, today, and tomorrow. — Plant Physiol. 147, 456–468, 2008.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Feng, Z., Chen, X., Bao, Y., Dong, J., Zhang, Z., Tao, X.: Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. — New Phytol. 200: 1212–1224, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Gaba, V., Rosner, A., Maslenin, L., Leibman, D., Singer, S., Kukurt, E., Shiboleth, Y.M., Gal-On, A.: Hairpin-based virus resistance depends on the sequence similarity between challenge virus and discrete, highly accumulating siRNA species. — Eur. J. Plant Pathol. 128: 153–164, 2010.

    Article  CAS  Google Scholar 

  • Gielen, J.J.L., De Haan, P., Kool, A.J., Peters, D., Van Grinsven, M.Q.J.M., Goldbach, R.W.: Engineered resistance to Tomato spotted wilt virus, a negative-strand RNA virus. — Nat. Biotechnol. 9: 1363–1367, 1991.

    Article  CAS  Google Scholar 

  • Gordillo, L.F., Stevens, M.R., Millard, M.A., Geary, B.: Screening two Lycopersicon peruvianum collections for resistance to Tomato spotted wilt virus. — Plant Dis. 92: 694–704, 2008.

    Article  Google Scholar 

  • Gracia, O., De Borbon, C.M., De Millan, N.G., Cuesta, G.V.: Occurrence of different tospoviruses in vegetable crops in Argentina. — J. Phytopathol. 147: 223–227, 1999.

    Article  Google Scholar 

  • Hallwass, M., Oliveira, A. S., Campos Dianese, E., Lohuis, D., Boiteux, L.S., Inoue-Nagata, A.K., Kormelink, R.: The Tomato spotted wilt virus cell-to-cell movement protein (NSM) triggers a hypersensitive response in Sw-5-containing resistant tomato lines and in Nicotiana benthamiana transformed with the functional Sw-5b resistance gene copy. — Mol. Plant Pathol. 15: 185–195, 2014.

    Article  Google Scholar 

  • Herrero, S., Culbreath, A.K., Csinos, A.S., Pappu, H.R., Rufty, R.C., Daub, M.E.: Nucleocapsid gene-mediated transgenic resistance provides protection against Tomato spotted wilt virus epidemics in the field. — Phytopathology 90: 139–147, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C., Voinnet, O.: Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. — EMBO J. 22: 4523–4533, 2003.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Jan, F.J., Fagoaga, C., Pang, S.-Z., Gonsalves, D.: A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. — J. gen. Virol. 81: 235–242, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson, R.A.: Assaying chimeric genes in plants: the GUS gene fusion system. — Plant mol. Biol. Rep. 5: 387–405, 1987.

    Article  CAS  Google Scholar 

  • Kondo, H., Maeda, T., Shirako, Y., Tamada, T.: Orchid fleck virus is a rhabdovirus with an unusual bipartite genome. — J. gen. Virol. 87: 2413–2421, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kormelink, R., Garcia, M.L., Goodin, M., Sasaya, T., Haenni, A.-L.: Negative-strand RNA viruses: the plant-infecting counterparts. — Virus Res. 162: 184–202, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Lafforgue, G., Martínez, F., Niu, Q.-W., Chua, N.-H., Daròs, J.- A., Elena, S.F.: Improving the effectiveness of artificial microRNA (amiR)-mediated resistance against Turnip mosaic virus by combining two amiRs or by targeting highly conserved viral genomic regions. — J. Virol. 87: 8254–8256, 2013.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Lafforgue, G., Martínez, F., Sardanyés, J., De la Iglesia, F., Niu, Q.-W., Lin, S.-S., Solé, R. V, Chua, N.-H., Daròs, J.-A., Elena, S.F.: Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. — J. Virol. 85: 9686–9695, 2011.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Latham, L.J., Jones, R.A.C.: Selection of resistance breaking strains of Tomato spotted wilt tospovirus. — Ann. appl. Biol. 133: 385–402, 1998.

    Article  Google Scholar 

  • Li, Z., Jarret R.L., Demski J.W.: Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. — Transgenic Res. 6: 297–305, 1997.

    Article  CAS  Google Scholar 

  • Lin, C.Y., Ku, H.M., Tsai, W.S., Green, S.K., Jan, F.J.: Resistance to a DNA and a RNA virus in transgenic plants by using a single chimeric transgene construct. — Transgenic Res. 20: 261–270, 2011.

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie, D.J., Ellis, P.J.: Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. — Mol. Plant Microbe Interact. 5: 34–40, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Magbanua, Z.V., Wilde, H.D., Roberts, J.K., Chowdhury, K., Abad, J., Moyer, J.W., Parrott, W.A.: Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. — Mol. Breed. 6: 227–236, 2000.

    Article  CAS  Google Scholar 

  • Margaria, P., Bosco, L., Vallino, M., Ciuffo, M., Mautino, G.C., Tavella, L., Turina, M.: The NSs protein of Tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. — J. Virol. 88: 5788–5802, 2014.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., Gleba, Y.: Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. — Nat. Biotechnol. 23: 718–723, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Martínez, F., Lafforgue, G., Morelli, M.J., González-Candelas, F., Chua, N.H., Daròs, J.A., Elena, S.F.: Ultradeep sequencing analysis of population dynamics of virus escape mutants in RNAi-mediated resistant plants. — Mol. Biol. Evol. 29: 3297–3307, 2012.

    Article  PubMed  Google Scholar 

  • Mielke-Ehret, N., Mühlbach, H.-P.: Emaravirus: a novel genus of multipartite, negative strand RNA plant viruses. — Viruses 4: 1515–1536, 2012.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Miki, D., Itoh, R., Shimamoto, K.: RNA silencing of single and multiple members in a gene family of rice. — Plant Physiol. 138: 1903–1913, 2005.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Mubin, M., Hussain, M., Briddon, R.W., Mansoor, S.: Selection of target sequences as well as sequence identity determine the outcome of RNAi approach for resistance against cotton leaf curl geminivirus complex. — Virol. J. 8: 1–8, 2011.

    Article  Google Scholar 

  • Pang, S.Z., Jan F.J., Gonsalves, D.: Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. — Proc. nat. Acad. Sci. USA 94: 8261–8266, 1997.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Peng, J.C., Chen, T.C., Raja, J.A., Yang, C.F., Chien, W.C., Lin, C.H., Yeh, S.D.: Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. — PloS one 9: e96073, 2014.

    PubMed Central  Article  PubMed  Google Scholar 

  • Prins, M., De Haan, P., Luyten, R., Van Veller, M., Van Grinsven, M.Q., Goldbach, R.: Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. — Mol. Plant Microbe Interact. 8: 85–91, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Prins, M., Goldbach, R.: The emerging problem of tospovirus infection and nonconventional methods of control. — Trends Microbiol. 6: 31–35, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Prins, M., Kikkert, M., Ismayadi, C., Graauw, W. De Haan, P., Goldbach, R.: Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NSM gene sequences. — Plant mol. Biol. 33: 235–243, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Prins, M., Resende, R.D.O., Anker, C., Van Schepen, A., De Haan, P., Goldbach, R.: Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. — Mol. Plant Microbe Interact. 9: 416–418, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Ritzenthaler, C.: Resistance to plant viruses: old issue, news answers? — Curr. Opin. Biotechnol. 16: 118–122, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, C., Schreier, P.H., Uhrig, J.F.: Peptide-mediated broad-spectrum plant resistance to tospoviruses. — Proc. nat. Acad. Sci. USA. 100: 4429–4434, 2003.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Schöb, H., Kunz, C., Meins, F., Jr.: Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. — Mol. gen. Genet. 256: 581–585, 1997.

    Article  PubMed  Google Scholar 

  • Scholthof, K.G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., Foster, G.D.: Top 10 plant viruses in molecular plant pathology. — Mol. Plant Pathol. 2: 938–954, 2011.

    Article  Google Scholar 

  • Sherman, J.M., Moyer, J.W., Daub, M.E.: Tomato spotted wilt virus resistance in Chrysanthemum expressing the viral nucleocapsid gene. — Plant Dis. 82: 407–414, 1998.

    Article  Google Scholar 

  • Simon-Mateo, C., Garcia, J.A.: MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. — J. Virol. 80: 2429–2436, 2006.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Simon-Mateo, C., Garcia, J.A.: Antiviral strategies in plants based on RNA silencing. — Biochim. biophys. Acta. 1809: 722–731, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Sin, S.H., McNulty, B.C., Kennedy, G.G., Moyer, J.W.: Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. — Proc. nat. Acad. Sci. USA 102: 5168–5173, 2005.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Sonoda, S.: Analysis of the nucleocapsid protein gene from Tomato spotted wilt virus as target and inducer for posttranscriptional gene silencing. — Plant Dis. 164: 717–725, 2003.

    CAS  Google Scholar 

  • Stevens, M.R., Scott, S.J., Gergerich, R.C.: Inheritance of a gene for resistance to Tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. — Euphytica 59: 9–17, 1991.

    Google Scholar 

  • Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Okuno, T.: Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett. 532: 75–79, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Tenllado, F., Diaz-Ruiz, J.R.: Double-stranded RNA-mediated interference with plant virus infection. — J. Virol. 75: 12288–12297, 2001.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Thompson, G.J., Van Zijl, J.J.B.: Control of Tomato spotted wilt virus in tomatoes in South Africa. — Acta Hort. 431: 379–384, 1995.

    Google Scholar 

  • Ultzen, T., Gielen, J., Venema, F., Westerbroek, A., Haan, P., Tan, M.-L., Schram, A., Grinsven, M., Goldbach, R.: Resistance to Tomato spotted wilt virus in transgenic tomato hybrids. — Euphytica 85: 159–168, 1995.

    Article  CAS  Google Scholar 

  • Vargas, M., Martínez-García, B., Díaz-Ruíz, J.R., Tenllado, F.: Transient expression of homologous hairpin RNA interferes with PVY transmission by aphids. — Virol. J. 5: 42, 2008.

    PubMed Central  Article  PubMed  Google Scholar 

  • Waterhouse, P.M., Graham, M.W., Wang, M.B.: Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. — Proc. nat. Acad. Sci. USA. 95: 13959–13964, 1998.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Waterhouse, P.M., Wang, M.B., Lough, T.: Gene silencing as an adaptive defence against viruses. — Nature 411: 834–842, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Wesley, S.V, Helliwell, C., Smith, N., Wang, M.B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P., Robinson, S.P., Gleave, P., Green, G., Waterhouse, P.M.: Construct design for efficient, effective and high-throughput gene silencing in plants. — Plant J. 27: 581–590, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Williams, L.V., Lambertini, P.M.L., Shohara, K., Biderbost, E.B.: Occurrence and geographical distribution of tospovirus species infecting tomato crops in Argentina. — Plant Dis. 85: 1227–1229, 2001.

    Article  Google Scholar 

  • Xie, X., Song, Y., Liu, X., Wang, S., Zhu, C., Wen, F.: Different target genes and chimeric-gene hairpin structures affect virus resistance mediated by RNA silencing in transgenic tobacco. — Biol. Plant. 48: 575–584, 2014.

    Article  Google Scholar 

  • Xu, P., Zhang, Y., Kang, L., Roossinck, M.J., Mysore, K.S.: Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. — Plant Physiol. 142: 429–440, 2006.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Yang, S.-J., Carter, S.A., Cole, A.B., Cheng, N.-H., Nelson, R.S.: A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. — Proc. nat. Acad. Sci. USA. 101: 6297–6302, 2004.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Zaccardelli, M., Perrone, D., Del Galdo, A., Campanile, F., Parrella, G., Giordano, I.: Tomato genotypes resistant to Tomato spotted wilt virus evaluated in open field crops in Southern Italy. — Acta Hort. 789: 147–149, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. López Lambertini.

Additional information

Acknowledgments: This work was supported by the National Program of Plant Protection (AEPV-214022), Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina. We thank Ing Agr Exequiel Tommasino for statistics advice.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Debat, H.J., Grabiele, M., Ducasse, D.A. et al. Use of silencing reporter and agroinfiltration transient assays to evaluate the potential of hpRNA construct to induce multiple tospovirus resistance. Biol Plant 59, 715–725 (2015). https://doi.org/10.1007/s10535-015-0530-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0530-1

Additional key words

  • broad-spectrum resistance
  • Nicotiana benthamiana
  • tobacco
  • transgene evaluation