Skip to main content
Log in

Anthocyanin accumulation rate and the biosynthesis related gene expression in Dioscorea alata

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

In this study, the anthocyanin content and real-time quantitative expression of the anthocyanin biosynthesis-related genes were investigated in leaves, stems, and tubers of purple yam (Dioscorea alata L.). The anthocyanin content, its accumulation, and the expression of genes encoding phenylalanine ammonia lyase (PAL), flavanone-3-hydroxylase (F3H), anthocyanidin synthase (ANS), and UDP-glycose flavonoid glycosyl transferase (UFGT) were studied. The anthocyanin content in the leaves and stems was high at early stages of growth, but it decreased and remained at a similar level from the 35th day onward. The anthocyanin content in the tubers firstly increased, reached a high peak at the 110th day of growth, after which decreased. Anthocyanin accumulation rates and the expressions of the anthocyanin biosynthesis genes were high at the early stages of growth in the leaves and stems, but in tubers, two peaks were observed: at days 80 and 140 for the gene expression and at days 125 and 170 for the anthocyanin accumulation rate. Thus, there was coordination between the gene expressions and the anthocyanin accumulation rates in the various organs as well as in the entire plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANS:

anthocyanidin synthase

CHS:

chalcone synthase

F3H:

flavanone-3-hydroxylase

DFR:

dihydroflavonol-4-reductase

PAL:

phenylalanine ammonia lyase

qRT-PCR:

quantitative real-time PCR

UFGT:

UDP-glycose flavonoid glycosyl transferase

References

  • Aguilar-Barragán, A., Ochoa-Alejo, N.: Virus-induced silencing of MYB and WD40 transcription factor genes affects the accumulation of anthocyanins in chilli pepper fruit. — Biol. Plant. 58: 567–574, 2014.

    Article  Google Scholar 

  • Champagne, A., Hilbert, G., Legendre, L., Lebot, V.: Diversity of anthocyanins and other phenolic compounds among tropical root crops from Vanuatu, South Pacific. — J. Agr. Food Comp. Anal. 4: 315–325, 2011.

    Article  Google Scholar 

  • Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M., Lepiniec, L.: Proanthocyanidin accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. — Plant Cell 15: 2514–2531, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feyissa, D.N., Løvdal, T., Olsen, K.M., Slimestad, R., Lillo, C.: The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. — Planta 230: 747–754, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z., Peng, Z., Li, X., Mu, S., Ma, Y.: Isolation and tissue specific expression analysis of phenylanlanine ammonialyase gene from Phyllostachys edulis. — Forest Res. 22: 449–453, 2009.

    Google Scholar 

  • Graf, D., Seifert, S., Jaudszus, A., Bub, A., Watzl, B.: Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves flasma fatty acid composition in fischer rats. — PLoS ONE. 8: e66690, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara, M., Oki, K., Hoshino, K., Kuboi, T.: Effects of sucrose on anthocyanin production in hypocotyl of two radish (Raphanus sativus) varieties. — Plant Biotechnol. 21: 401–405, 2004.

    Article  CAS  Google Scholar 

  • Hou, F., Wang, Q., Dong, S., Li, A., Zhang, H., Xie, B., Zhang, L.: Accumulation and gene expression of anthocyanin in storage roots of purple freshed sweet potato (Ipomoea batatas L. Lam) under weak light conditions. — Agr. Sci. China. 9: 1588–1593, 2010.

    Article  CAS  Google Scholar 

  • Kim, S.H., Lee, J.R., Hong, S.T., Yoo, Y.K., An, G., Kim, S.R.: Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. — Plant Sci. 165: 403–413, 2003.

    Article  CAS  Google Scholar 

  • Kolahi, M., Jonoubi, P., Majd, A., Tabandeh, M.R., Hashemitabar, M.: Differential expression of phenylalanine ammonia-lyase in different tissues of sugarcane (Saccharum officinarum L.) during development. — Biol. Resour. 8: 4912–4922, 2013.

    Google Scholar 

  • Lepiniec, L., Debeaujon, I., Routaboul, J.M., Baudry, A., Pourcel, L., Nesi, N., Caboche, M.: Genetics and biochemistry of seed flavonoids. — Biol.Plant. 57: 405–430, 2006.

    Article  CAS  Google Scholar 

  • Liu, X., Chen, M., Li, M., Yang, C., Fu, Y., Zhang, Q., Zeng, L., Liao, Z.: The anthocyanidin synthase gene from sweetpotato [Ipomoea batatas(L.)Lam]: cloning, characterization and tissue expression analysis. — Afr. J Biotechnol. 9: 3748–3752, 2010.

    CAS  Google Scholar 

  • Majdi, M., Karimzadeh, G., Malboobi, M.A.: Spatial and developmental expression of key genes of terpene biosynthesis in Tanacetum parthenium. — Biol. Plant. 58: 379–384, 2014.

    Article  CAS  Google Scholar 

  • Mehrtens, F., Kranz, H., Bednarek, P., Weisshaar, B.: The Arabidopsis transcription factor MYB12 is a flavonolspecific regulator of phenylpropanoid biosynthesis. — Plant Physiol. 138: 1083–1096, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng, X., Yin, B., Feng, H., Zhang, S., Liang, X., Meng, Q.: Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. — Biol. Plant. 58: 121–130, 2014.

    Article  CAS  Google Scholar 

  • Povero, G., Gonzali, S., Bassolino L., Mazzucato, A., Perata, P.: Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of Aft and atv genes. — J. Plant Physiol. 168: 270–279, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Szankowski, I., Flachowsky, H., Li, H., Halbwirth, H., Treutter, D., Regos, I., Hanke, M.V., Stich, K., Fischer, T.C.: Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). — Planta. 229: 681–692, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Valderrama-Cháirez, M.L., Cruz-Hernández, A., Paredes-López, O.: Isolation of functional RNA from cactus fruit. — Plant mol. Biol. Rep. 20: 279–286, 2002.

    Article  Google Scholar 

  • Yuan, J.S., Reed, A., Chen, F., Stewart, N.C., Jr.: Statistical analysis of real- time PCR data. — Mol. cell. Biochem. 357: 275–282, 2011.

    Article  Google Scholar 

  • Zhang, J., Lazarenko, O.P., Blackburn, M.L., Badger, T.M., Ronis, M.J.J., Chen, J.R.: Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells. — AGE 35: 807–820, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, K.C., Jin, Q., Cai, Y.P., Lin, Y.: Research progress of PAL and its control function of important secondary metabolites. — Chin. agr. Sci. Bull. 24: 59–62, 2008.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Yin.

Additional information

Acknowledgements: This work was supported by the Jiangsu Agricultural Science and Technology Innovation Fund [No.CX(13)5008], China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J.M., Yan, R.X., Zhang, P.T. et al. Anthocyanin accumulation rate and the biosynthesis related gene expression in Dioscorea alata . Biol Plant 59, 325–330 (2015). https://doi.org/10.1007/s10535-015-0502-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0502-5

Additional key words

Navigation