Skip to main content

The genetic basis of durum wheat germination and seedling growth under osmotic stress

Abstract

Durum wheat (Triticum turgidum L. var. durum) is mainly produced under rainfed but often sub-optimal moisture conditions in the Mediterranean basin. A set of 114 durum wheat recombinant inbred lines (RILs) developed from the cross of cultivars Omrabi5 × Belikh2 were tested for the ability to tolerate moisture deficiency at the germination and early seedling growth stage. The stress was imposed by exposing the germinating grain to 12 % polyethylene glycol. It induced a measurable reduction in root length, shoot length, and the percentage of normal seedlings. The germination and seedling growth of Belikh2 were more strongly inhibited than those of Omrabi5, and both parents were outperformed by > 50 % of the RILs. A quantitative trait locus (QTL) analysis was carried out by first assembling a linkage map from 265 informative microsatellites. Composite interval mapping revealed nine QTL spread over seven chromosomes. Five of these were associated with coleoptile length, and one of the five explained nearly 29 % of the relevant phenotypic variance. The coleoptile length was significantly correlated with the seedling growth, plant height, and thousand kernel mass derived from field-grown plants of the same RIL population.

This is a preview of subscription content, access via your institution.

Abbreviations

BARC:

Beltsville Agricultural Research Centre

GWM:

Gatersleben Wheat Microsatellite

H2 :

broad-sense heritability

ICARDA:

International Center for Agricultural Research in the Dry Areas

ISTA:

International Seed Testing Association

LOD:

logarithm of odds

NS:

normal seedling

PEG:

polyethylene glycol

QTL:

quantitative trait locus

RIL:

recombinant inbred line

TG:

total germinated seedlings

TI:

tolerance index

WMC:

Wheat Microsatellite Consortium

References

  • Akinci, C., Yildirim, M., Bahar, B.: The effects of seed size on emergence and yield of durum wheat. — J. Food Agr. Environ. 6: 234–237, 2008.

    Google Scholar 

  • Almansouri, M., Kinet, J.M., Lutts, S.: Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). — Plant Soil 231: 243–254, 2001.

    Article  CAS  Google Scholar 

  • Blanco, A., Lotti, C., Simeone, R., Signorile, A., De Santis, V., Pasqualone, A., Troccoli, A., Di Fonzo, N.: Detection of quantitative trait loci for grain yield and yield components across environments in durum wheat. — Cereal Res. Commun. 29: 237–244, 2001.

    CAS  Google Scholar 

  • Blum, A.: Osmotic adjustment and growth of barley genotypes under drought stress. — Crop Sci. 29: 230–233, 1989.

    Article  Google Scholar 

  • Blum, A.: Crop responses to drought and the interpretation of adaptation. — Plant Growth Regul. 20: 135–148, 1996.

    Article  CAS  Google Scholar 

  • Börner, A., Röder, M., Korzun, V.: Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). — Theor. appl. Genet. 95: 1133–1137, 1997.

    Article  Google Scholar 

  • Bouaziz, A., Hicks, D.R.: Consumption of wheat seed reserves during germination and early growth as affected by soilwater potential. — Plant Soil 128: 161–165, 1990.

    Article  Google Scholar 

  • Chazen, O., Hartung, W., Neumann, P.M.: The different effects of PEG-6000 and NaCl on leaf development are associated with differential inhibition of root water transport. — Plant Cell Environ. 18: 727–735, 1995.

    Article  CAS  Google Scholar 

  • Chen, G.X., Krugman, T., Fahima, T., Chen, K.G., Hu, Y.G., Roder, M., Nevo, E., Korol, A.: Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. — Genet. Resour. Crop Evol. 57: 85–99, 2010.

    Article  Google Scholar 

  • Collins, N.C., Tardieu, F., Tuberosa, R.: Quantitative trait loci and crop performance under abiotic stress: where do we stand? — Plant Physiol. 147: 469–486, 2008.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Connell, P., Lawrance, L., Nelson, R.: Durum wheat — Australia’s role in world markets. — Aust. Commodities 11: 319–324, 2004.

    Google Scholar 

  • Czyczylo-Mysza, I., Marcinska, I., Skrzypek, E., Chrupek, M., Grzesiak, S., Hura, T., Stojalowski, S., Myskow, B., Milczarski, P., Quarrie, S.: Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. — Plant Genet. Resour. Charact. Utilization 9: 291–295, 2011.

    Article  CAS  Google Scholar 

  • Ganal, M.W., Röder, M.: Microsatellite and SNP markers in wheat breeding. — In: Varshney, R.K., Tuberosa, R. (ed.): Genomics Assisted Crop Improvement. Vol. 2. Pp. 1–24. Springer, Dordrecht 2007.

    Chapter  Google Scholar 

  • Golabadi, M., Arzani, A., Maibody, S.A.M.M., Tabatabaei, B.E.S., Mohammadi, S.A.: Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. — Euphytica 177: 207–221, 2011.

    Article  Google Scholar 

  • González, Á., Ayerbe, L.: Response of coleoptiles to water deficit: growth, turgor maintenance and osmotic adjustment in barley plants (Hordeum vulgare L.). — Agr. Sci. 2: 159–166, 2011.

    Google Scholar 

  • Habash, D.Z., Kehel, Z., Nachit, M.: Genomic approaches for designing durum wheat ready for climate change with a focus on drought. — J. exp. Bot. 60: 2805–2815, 2009.

    PubMed  Article  CAS  Google Scholar 

  • Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R., Panneerselvam, R.: Drought stress in plants: a review on morphological characteristics and pigments composition. — Int. J. Agr. Biol. 11: 100–105, 2009.

    Google Scholar 

  • Kato, Y., Hirotsu, S., Nemoto, K., Yamagishi, J.: Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture. — Euphytica 160: 423–430, 2008.

    Article  Google Scholar 

  • Kaydan, D., Yagmur, M.: Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. — Afr. J. Biotechnol. 7: 2862–2868, 2008.

    CAS  Google Scholar 

  • Khurana, E., Singh, J.S.: Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. — Environ. Conserv. 28: 39–52, 2001.

    Article  Google Scholar 

  • Kosambi, D.D.: The estimation of map distance from recombination values. — Ann. Eugenics 12: 172–175, 1944.

    Article  Google Scholar 

  • Kulkarni, M., Deshpande, U.: In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. — Afr. J. Biotechnol. 6: 691–696, 2007.

    CAS  Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L.: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. — Genomics 1: 174–181, 1987.

    PubMed  Article  CAS  Google Scholar 

  • Landjeva, S., Neumann, K., Lohwasser, U., Börner, A.: Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. — Biol. Plant. 52: 259–266, 2008.

    Article  Google Scholar 

  • Leishman, M.R., Westoby, M.: The role of seed size in seedling establishment in dry soil conditions — experimental evidence from semiarid species. — J. Ecol. 82: 249–258, 1994.

    Article  Google Scholar 

  • Liu, X., Li, R., Chang, X., Jing, R.: Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. — Euphytica 189: 51–66, 2013.

    Article  Google Scholar 

  • Maccaferri, M., Sanguineti, M.C., Corneti, S., Ortega, J.L.A., Ben Salem, M., Bort, J., DeAmbrogio, E., Del Moral, L.F.G., Demontis, A., El-Ahmed, A., Maalouf, F., Machlab, H., Martos, V., Moragues, M., Motawaj, J., Nachit, M., Nserallah, N., Ouabbou, H., Royo, C., Slama, A., Tuberosa, R.: Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. — Genetics 178: 489–511, 2008.

    PubMed  Article  PubMed Central  Google Scholar 

  • Maccaferri, M., Sanguineti, M.C., Demontis, A., El-Ahmed, A., Del Moral, L.G., Maalouf, F., Nachit, M., Nserallah, N., Ouabbou, H., Rhouma, S., Royo, C., Villegas, D., Tuberosa, R.: Association mapping in durum wheat grown across a broad range of water regimes. — J. exp. Bot. 62: 409–438, 2011.

    PubMed  Article  CAS  Google Scholar 

  • McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? — New Phytol. 178: 719–739, 2008.

    PubMed  Article  Google Scholar 

  • Mian, M.A.R., Nafziger, E.D.: Seed size and water potential effects on germination and seedling growth of winter-wheat. — Crop Sci. 34: 169–171, 1994.

    Article  Google Scholar 

  • Michel, B.E., Kaufmann, M.R.: Osmotic potential of polyethylene-glycol 6000. — Plant Physiol. 51: 914–916, 1973.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Mut, Z., Akay, H., Aydin, N.: Effects of seed size and drought stress on germination and seedling growth of some oat genotypes (Avena sativa L.) — Afr. J. agr. Res. 5: 1101–1107, 2010.

    Google Scholar 

  • Nachit, M., Elouafi, I.: Durum wheat adaptation in the Mediterranean dryland: breeding, stress physiology, and molecular markers. — Crop Sci. 32: 203–218, 2004.

    Google Scholar 

  • Nagel, M., Vogel, H., Landjeva, S., Buck-Sorlin, G., Lohwasser, U., Scholz, U., Börner, A.: Seed conservation in ex-situ genebanks — genetic studies on longevity in barley. — Euphytica 170: 1–10, 2009.

    Article  Google Scholar 

  • Palta, J.A., Chen, X., Milroy, S.P., Rebetzke, G.J., Dreccer, M.F., Watt, M.: Large root systems: are they useful in adapting wheat to dry environments? — Funct. Plant Biol. 38: 347–354, 2011.

    Article  Google Scholar 

  • Passioura, J.B.: Roots and drought resistance. — Agr. Water Manage. 7: 265–280, 1983.

    Article  Google Scholar 

  • Rebetzke, G.J., Ellis, M.H., Bonnett, D.G., Richards, R.A.: Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). — Theor. appl. Genet. 114: 1173–1183, 2007.

    PubMed  Article  CAS  Google Scholar 

  • Rebetzke, G.J., Richards, R.A., Fischer, V.M., Mickelson, B.J.: Breeding long coleoptile, reduced height wheats. — Euphytica 106: 159–168, 1999.

    Article  Google Scholar 

  • Reza, T., Fayaz, F., Naji, A.M.: Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). — Gen. appl. Plant Physiol. 35: 64–74, 2009.

    Google Scholar 

  • Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P., Ganal, M.W.: A microsatellite map of wheat. — Genetics 149: 2007–2023, 1998.

    PubMed  PubMed Central  Google Scholar 

  • Rosyara, U.R., Ghimire, A.A., Subedi, S., Sharma, R.C.: Variation in south Asian wheat germplasm for seedling drought tolerance traits. — Plant genet. Resources Charact. Utilization 7: 88–93, 2009.

    Article  Google Scholar 

  • Sade, B., Soylu, S., Yetim, E.: Drought and oxidative stress. — Afr. J. Biotechnol. 10: 11102–11109, 2011.

    CAS  Google Scholar 

  • Schutte, B.J., Regnier, E.E., Harrison, S.K.: The association between seed size and seed longevity among maternal families in Ambrosia trifida L. populations. — Seed Sci. Res. 18: 201–211, 2008.

    Article  Google Scholar 

  • Schwienbacher, E., Marcante, S., Erschbamer, B.: Alpine species seed longevity in the soil in relation to seed size and shape — A 5-year burial experiment in the Central Alps. — Flora 205: 19–25, 2010.

    Article  Google Scholar 

  • Song, Q.J., Shi, J.R., Singh, S., Fickus, E.W., Costa, J.M., Lewis, J., Gill, B.S., Ward, R., Cregan, P.B.: Development and mapping of microsatellite (SSR) markers in wheat. — Theor. appl. Genet. 110: 550–560, 2005.

    PubMed  Article  CAS  Google Scholar 

  • Spielmeyer, W., Hyles, J., Joaquim, P., Azanza, F., Bonnett, D., Ellis, M.E., Moore, C., Richards, R.A.: A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. — Theor. appl. Genet. 115: 59–66, 2007.

    PubMed  Article  CAS  Google Scholar 

  • Tuberosa, R., Salvi, S.: Genomics-based approaches to improve drought tolerance of crops. — Trends Plant Sci. 11: 405–412, 2006.

    PubMed  Article  CAS  Google Scholar 

  • Utz, H.F.: PlabStat (version 3A). A computer program for statistical analysis of plant breeding experiments. — In: Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 2011.

  • Vadez, V., Kholova, J., Zaman-Allah, M., Belko, N.: Water: the most important’ molecular’ component of water stress tolerance research. — Funct. Plant Biol. 40: 1310–1322, 2013.

    Article  Google Scholar 

  • Verslues, P.E., Ober, E.S., Sharp, R.E.: Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. — Plant Physiol. 116: 1403–1412, 1998.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Wang, S., Basten, C.J., Zeng, Z.-B.: Windows QTL Cartographer 2.5, — In. Department of Statistics, North Carolina State University, Raleigh, 2011. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Willenborg, C.J., Wildeman, J.C., Miller, A.K., Rossnagel, B.G., Shirtliffe, S.J.: Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. — Crop Sci. 45: 2023–2029, 2005.

    Article  Google Scholar 

  • Wu, Y., Cosgrove, D.J.: Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. — J. exp. Bot. 51: 1543–1553, 2000.

    PubMed  Article  CAS  Google Scholar 

  • Zhang, H., Cui, F., Wang, H.: Detection of quantitative trait loci (QTLs) for seedling traits and drought tolerance in wheat using three related recombinant inbred line (RIL) populations. — Euphytica ??: 1–18, 2013a.

  • Zhang, H., Cui, F., Wang, L., Li, J., Ding, A., Zhao, C., Bao, Y., Yang, Q., Wang, H.: Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. — J. Genet. 92: 213–231, 2013b.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nagel.

Additional information

Acknowledgements: We thank Ahmed Alsaleh, Annett Marlow, Hani Hazzam, Mohamed Azrak, Peter Schreiber, Saer Dawer, and Stefanie Thumm for their help with plant and laboratory work. The Deutsche Gesellschaft für Internationale Zusammenarbeit is acknowledged for its financial support under the Project 07.7860.5-001.00. The first two authors contributed equally to this paper.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagel, M., Navakode, S., Scheibal, V. et al. The genetic basis of durum wheat germination and seedling growth under osmotic stress. Biol Plant 58, 681–688 (2014). https://doi.org/10.1007/s10535-014-0436-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0436-3

Additional key words

  • drought stress
  • polyethylene glycol
  • QTL
  • recombinant inbred lines
  • seed size
  • seed vigour
  • Triticum durum