Abstract
Plant growth regulators (PRG)-assisted phytoremediation is a technique that could enhance the yield of heavy metal accumulation in plant tissues. So far, a small number of experiments have helped identify three groups of plant hormones that may be useful for this purpose: auxins, cytokinins, and gibberellins. Studies have shown that these hormones positively affect the degree of accumulation of metallic impurities and improve the growth and stress resistance of plants. This review summarizes the present knowledge about PGRs’ impact on phytoextraction yield.
This is a preview of subscription content, access via your institution.
Abbreviations
- ABA:
-
abscisic acid
- BAP:
-
6-benzylaminopurine
- EDDS:
-
ethylenediamine-N,N′-disuccinic acid
- EDTA:
-
ethylenediaminetetraacetic acid
- GA3 :
-
gibberellic acid
- IAA:
-
indole-3-acetic acid
- IBA:
-
indole-3-butyric acid
- JA:
-
jasmonic acid
- NAA:
-
naphthylacetic acid
- NLMMOA:
-
natural low molecular mass organic acids
- NTA:
-
nitrilotriacetic acid
- PAA:
-
phenylacetic acid
- PGR:
-
plant growth regulators
References
Appenroth, K.J.: Definition of “heavy metals” and their role in biological systems. — In: Sherameti, I., Varma, A. (ed.): Soil Heavy Metals. Pp. 19–29. Springer, Berlin — Heidelberg 2010.
Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.
Baker, A.J.M.: Zinc-phosphorus interaction in a zinc-tolerant and a non-tolerant population of Silene maritima With. — New Phytol. 81: 331–339, 1978.
Baker, A.J.M.: Accumulators and excluders-strategies in the response of plants to heavy metals. — J. Plant Nutr. 3: 643–654, 1981.
Baker, A.J.M., Brooks, R.R.: Terrestrial higher plants which hyper accumulate metallic elements — review of their distribution, ecology and phytochemistry. — Biorecovery 1: 81–126, 1989.
Baker, A.J.M., Walker, P.L.: Ecophysiology of metal uptake by tolerant plants: heavy metal tolerance in plants. — In: Shaw, A.J. (ed.): Heavy Metal Tolerance in Plants: Evolutionary Aspects. Pp. 155–177. CRC Press, Boca Raton, 1990.
Balakhnina, T., WŁodarczyk, T., Borkowska, A., Nosalewicz, N., Serdyuk, O., Smolygina, L., Ivanova, E., Fomina, I.: Effect of 4-hydroxyphenethyl alcohol on growth and adaptive potential of barley plants under optimal and soil flooding conditions. — Polish J. environ. Stud. 19: 565–572, 2009.
Baranowska-Morek, A., Wierzbicka, M.: Localization of lead in root tip of Dainthus carthusianorum. — Acta biol. cracow. Ser. Bot. 46: 45–56, 2004.
Barbafieri, M., Tassi, E.: Brassinosteroids for phytoremediation application. — In: Hayat, S., Ahmad, A. (ed.): Brassinosteroids: a Class of Plant Hormones. Pp. 403–437. Springer, Berlin 2011.
Bareen, M.S., Jamil, S.: Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. — J. hazard. Mater. 237–238: 186–193, 2012.
Brooks, R.R., Lee, J., Jaffré, T.: Some New Zealand and New Caledonian plant accumulators of nickel. — J. Ecol. 62: 493–499, 1974.
Cassina, L., Tassi, T., Pedron, F., Petruzzelli, G., Ambrosini, P., Barbafieri, M.: Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. — J. hazard. Mater. 231–232: 36–42, 2012.
Chen, C.Y., Zou, J.H., Zhang, S.Y., Zaitlin, D., Zhu, L.H.: Stringolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds. — Sci. China Ser. C 52: 693–700, 2009.
Cunningham, S.D., Berti, W.R.: Remediation of contaminated soils with green plants: an overview. — In Vitro cell. dev. Biol. Plant 29: 207–212, 1993.
Du, R.J., He, E.K., Tang, Y.T., Hy, P.J., Ying, R.R., Morel, J.L., Qiu, R.L.: How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata. — Int. J. Phytoremed. 13: 1024–1036, 2011.
Evangelou, M.H.W., Ebel, M., Schaeffer, A.: Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb soil with tobacco Nicotiana tabacum. — Chemosphere 63: 996–1004, 2006.
Evangelou, M.W.H., Ebel, M., Schaeffer, A.: Chetale assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. — Chemophere 68: 989–1003, 2007.
Fuentes, H.D., Khoo, C.S., Pe, T., Muir, S., Khan, A.G.: Phytoremediation of a contaminated mine site using plant growth regulators to increase heavy metal uptake. — In: Sánchez, M. (ed.): Proceedings of the 5th International Conference on Clean Technologies for the Mining Industry. Vol. 1. Pp. 427–435. Universidad de Concepción, Santiago 2000.
Gawronski, S.W., Greger, M., Gawronska, H.: Plant taxonomy and metal phytoremediation. — In: Sherameti, I., Varma, A. (ed.): Detoxification of Heavy Metals. Pp. 91–109. Springer, Berlin — Heidelberg 2011.
Gosh, M., Singh, S.P.: A review of phytoremediation of heavy metals and utilization of its byproducts. — Appl. Ecol. Environ. Res. 3: 1–18, 2005.
Hadi, F., Bano, A., Fuller, M.P.: The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. — Chemosphere 80: 457–462, 2010.
Hajiboland, R., Manafi, M.H.: Flora of heavy metal-rich soils in NW Iran and some potential hyper-accumulator and accumulator species. — Acta bot. croat. 66: 177–195, 2007.
Huang, J.W., Blaylock, M.J., Kapulnik, Y., Ensley, B.D.: Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. — Environ. Sci. Technol. 32: 2004–2008, 1998.
Israr, M., Jewell, A., Kumar, D., Sahi, S.V.: Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of S. drummondii. — J. hazard. Mater. 186: 1520–1526, 2011.
Jones, D.L., Darrah, P.R.: Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. — Plant Soil 173: 103–109, 1995.
Kabata-Pendias A.: Trace Elements in Soils and Plants. — CRC Press, Boca RAton — London — New York 2011.
Kamal, M., Ghaly, A.E., Mahmoud, N., Côte, R.: Phytoaccumulation of heavy metals by aquatic plants. — Environ. Int. 29: 1029–1039, 2004.
Kozlov, M.V., Haukioja E., V., Bakhtiarov, A.V., Stroganov D.N.: Heavy metals in birch leaves around a nickel-copper smelter at Monchegorsk, Northwestern Russia. — Environ. Pollut. 90: 291–299, 1995.
Khan, A.S., Chaudhry, N.Y.: GA3 improves flower yield in some cucurbits treated with lead and mercury. — Afr. J. Biotechnol. 5: 149–153, 2006.
Krämer, U.: Metal hyperaccumulation in plants. — Annu. Rev. Plant Biol. 61: 517–534, 2010.
Liphadzi, M.S., Kirkham, M.B., Paulsen, G.M.: Auxinenhanced root growth for phytoremediation of sewagesludge amended soil. — Environ. Technol. 27: 695–704, 2006.
Lipiec, J.: Crop responses to soil compaction. — Nordic Assoc. agr. Sci. Rep. 8: 32, 2012.
Liu, D., Li, T., Yang, X., Islam, E., Jin, X., Mahmood, Q.: Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii Hance using EDTA and IAA. — Bull. Environ. Contam. Toxicol. 78: 280–283, 2007.
López, M.L., Peralta-Videa, J.R., Benitez, T., Gardea-Torresdey, J.L.: Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. — Chemosphere 61: 595–598, 2005.
López-Bucio, J., Nieto-Jacobo, M.F., Ramírez-Rodríguez, V., Herrera-Estrella, L.: Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. — Plant Sci. 160: 1–13, 2000.
Machackova, I., Zazimalova, E., George, E.F.: Plant growth regulators I: Introduction; auxins, their analogues and inhibitors. — In: George, E.F., Hall, M.A., De Klerk, G.-J. (ed.): Plant Propagation by Tissue Culture. Pp. 175–183. Springer, Berlin 2008.
Martin, S.R., Llugany, M., Barceló, J., Poschenrieder, C.: Cadmium exclusion a key factor in differential Cdresistance in Thlaspi arvense ecotypes. — Biol. Plant. 56: 729–734, 2012.
Masarovičová E., Králová K., Kummerová M.: Principles of classification of medical plants as hyperaccumulators or excluders. — Acta Physiol. Plant. 32: 823–829, 2010.
Meharg, A.A., Hartley-Whitaker, J.: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. — New Phytol. 154: 29–43, 2002.
Mganga, N., Manoko, M.L.K., Rulangaranga, Z.K.: Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: implication for phytoremediation. — Tanz. J. Sci. 37: 109–119, 2011.
Miransari, M.: Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. — Biotechnol. Adv. 29: 645–653, 2011.
Ouzounidou, G., Ilias, I.: Hormone-induced protection of sunflower photosynthetic apparatus against copper toxicity. — Biol. Plant. 49,2: 233–228, 2005.
Padmavathiamma, P.K., Li, L.Y.: Phytoremediation technology: hyper-accumulation metals in plants. — Water Air Soil Pollut. 184: 105–126, 2007.
Pilon-Smiths, E.A.H., Quinn, C.F., Tapken, W., Malagoni, M., Schiavon, M.: Physiological functions of beneficial elements. — Curr. Opin. Plant. Biol. 12: 267–274, 2009.
Piotrowska, A., Bajguz, A., Godlewska-Żyłkiewicz, B., Czerpak, R., Kamińska, M.: Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). — Environ. exp. Bot. 66: 509–513, 2009.
Pospíšilová, J., Synková, H., Rulcová, J.: Cytokinins and water stress. — Biol. Plant. 43: 321–328, 2000.
Sanitá Di Toppi, L., Gabrielli, R.: Response to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.
Santos, J.A.G., Gonzaga, M.I.S., Ma, L.Q., Srivastava, M.: Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages. — Environ. Pollut. 154: 306–311, 2008.
Sarma, H.: Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. — J. Environ. Sci. Technol. 4: 118–138, 2011.
Sarret, G., Vangronsveld, J., Manceau, A., Musso, M., D’Hean, J., Menthonnex, J.J., Hazemann, J.L.: Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. — Environ. Sci. Technol. 35: 2854–2859, 2001.
Sarret, G., Harada, E., Choi, Y.E., Isaure, M.P., Geoffroy, N., Fakara, S., Marcus, M.A., Birschwilks, M., Clemens, S., Manceau, A.: Trichomes of tobacco excrete zinc as zincsubstituted calcium carbonate and other zinc-containing compounds. — Plant Physiol. 141: 1021–1034, 2006.
Singh, A., Kuhad, R.C., Ward, O.P.: Biological remediation of soil: an overview of global market and available technologies. — In: Singh, A., Kuhad, R.C., Ward, O.P. (ed.): Advances in Applied Bioremediation. Vol. 17. Pp. 1–19, Springer-Verlag, Berlin — Heidelberg 2009.
Szarek-Łukaszewska, G., Słysz, A., Wierzbicka, M.: Response to Armeria maritima (Mill.) Willd. to Cd, Zn and Pb. — Acta biol. cracov. Ser. Bot. 46: 19–24, 2004.
Tassi, E., Pedron, F., Barbafieri, M., Petruzelli, G.: Phosphateassisted phytoremediation in As-contaminated soil. — Eng. Life Sci. 4: 341–346, 2004.
Tassi, E., Pouget, J., Petruzzelli, G., Barbafieri, M.: The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. — Chemosphere 71: 66–73, 2008.
Tian, S.K., Lu, L.L., Yang, X.E., Huang, H.G., Wang, K., Brown, P.H.: Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. — Biol. Plant. 56: 344–350, 2012.
Tu, S., Ma, L.Q., MacDonald, G.E., Bondada, B.: Effects of arsenic and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. — Environ. exp. Bot. 51: 121–131, 2004.
Vamerali, T., Bandiera, M., Hartley, W., Carletti, P., Mosca, G.: Assisted phytoremediation of mixed metal(loid)-polluted pyrite waste: effects of foliar and substrate IBA application on fodder radish. — Chemosphere 84: 213–219, 2011.
Van Nevel, L., Mertens, J., Verheyen, K.: Phytoextraction of metals from soils: how far from practice? — Environ. Pollut. 150: 34–40, 2007.
Verbruggen, N., Hermans, C., Schat, H.: Molecular mechanisms of metal hyperaccumulation in plants. — New. Phytol. 181: 759–776, 2009.
Vogel-Mikuš, K., Drobne, D., Regvar, M.: Zn, Cd and Pb accumulation and arbuscural mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. — Environ. Pollut. 133: 233–242, 2005.
Wang, H., Shan, X., Wen, B., Owens, G., Fang, J., Zhang, S.: Effects of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. — Environ. exp. Bot. 61: 246–253, 2007.
Wang, J., Zhao, F.J., Meharg, A.A., Raab, A., Fieldmann, J., McGrath, S.P.: Mechanisms of arsenic hyperaccumulation in Pteris vittata. — Plant Physiol. 130: 1552–1561, 2002.
Wu, H.B., Tang, R.R.: Using elevated CO2 to increase the biomass of a Sorghum vulgare × Sorgum vulgare var. sudanense hybrid and Trifolium pretense L. and to trigger hyperaccumulation of cesium. — J. hazard. Mater. 170: 861–870, 2009.
Yang, X., Feng, Y., He, Z., Stoffella, P.J.: Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. — J. Trace Element med. Biol. 18: 339–353, 2005.
Yuan, Z., Van Briesen, J.M.: The formation of intermediates in EDTA and NTA biodegradation. — Environ. Eng. Sci. 23: 533–544, 2006.
Zenk, M.H.: Heavy metal detoxification in higher plants: a review. — Gene 179: 21–30, 1996.
Author information
Authors and Affiliations
Corresponding author
Additional information
Acknowledgments: The authors would like to thank an anonymous reviewer for valuable comments and for the work he has put into creating the review. This paper was partly financed from the funds of the National Centre for Research and Development in Poland in the frame of the project: Knowledge Hub FACCE JPI “Modelling European Agriculture with Climate Change for Food Security” (MACSUR, P162).
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Bulak, P., Walkiewicz, A. & Brzezińska, M. Plant growth regulators-assisted phytoextraction. Biol Plant 58, 1–8 (2014). https://doi.org/10.1007/s10535-013-0382-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10535-013-0382-5
Additional key words
- auxins
- cytokinins
- gibberelins
- heavy metals
- phytoremediation
- pollutants