Skip to main content

Brassinosteroids and their role in response of plants to abiotic stresses

Abstract

Brassinosteroids (BRs) are polyhydroxylated steroidal plant hormones that play pivotal role in the regulation of various plant growth and development processes. BR biosynthetic or signaling mutants clearly indicate that these plant steroids are essential for regulating a variety of physiological processes including cellular expansion and proliferation, vascular differentiation, male fertility, timing senescence, and leaf development. Moreover, BRs regulate the expression of hundreds of genes, affect the activity of numerous metabolic pathways, and help to control overall developmental programs leading to morphogenesis. On the other hand, the potential application of BRs in agriculture to improve growth and yield under various stress conditions including drought, salinity, extreme temperatures, and heavy metal (Cd, Cu, Al, and Ni) toxicity, is of immense significance as these stresses severely hamper the normal metabolism of plants. Keeping in mind the multifaceted role of BRs, an attempt has been made to cover the various aspects mediated by BRs particularly under stress conditions and a possible mechanism of action of BRs has also been suggested.

This is a preview of subscription content, access via your institution.

Abbreviations

28norCS:

28-norcasterone

6deoxoCS:

6-deoxocasterone

6-deoxoTY:

6-deoxotyphasterol

BL:

brassinolide

BRI1:

brassinosteroids insensitive I

BRs:

brassinosteroids

CAT:

catalase

CS:

castasterone

EBL:

24-epibrassinolide

HBL:

28-homobrassinolide

LRR:

leucine rich repeat

MT-sHSP:

mitochondrial small heat shock protein

NPR1:

non-expressor of pathogenesis related genes 1

P5C:

pyrroline-5-carboxylase

POX:

peroxidase

PR-1:

pathogenesis related 1

PS II:

photosystem II

ROS:

reactive oxygen species

S/T kinase:

serine/threonine kinase

SOD:

superoxide dismutase

TE:

teasterone

TY:

typhasterol

References

  1. Abdullahi, B.A., Gu, X., Gan, Q., Yang, Y.: Brassinolide amelioration of aluminium toxicity in mung bean seedling growth. — J. Plant. Nutr. 26: 1725–1734, 2003.

    CAS  Article  Google Scholar 

  2. Ahammed, G.J., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Yu, J.Q.: Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. — Biol. Plant. 57: 154–158, 2013.

    CAS  Article  Google Scholar 

  3. Alam, M.M., Hayat, S., Ali, B., Ahmad, A.: Effect of 28-homobrassinolide on nickel induced changes in Brassica juncea. — Photosynthetica 45: 139–142, 2007.

    Article  Google Scholar 

  4. Ali, B., Hasan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A.: A role of brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L.) Wilczek. — Environ. exp. Bot. 62: 153–159, 2008a.

    CAS  Article  Google Scholar 

  5. Ali, B., Hayat, S., Ahmad, A.: 28-homobrassinolide ameliorates the saline stress in Cicer arietinum L. — Environ. exp. Bot. 59: 217–223, 2007.

    CAS  Article  Google Scholar 

  6. Ali, Q., Athar, H.R., Ashraf, M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. — Plant. Growth. Regul. 56: 107–116, 2008b.

    CAS  Article  Google Scholar 

  7. Allen, D.J., Ort, D.R.: Impact of chilling temperatures on photosynthesis in warm-climate plants. — Trends Plant. Sci. 6: 36–42, 2001.

    CAS  PubMed  Article  Google Scholar 

  8. Anuradha, S., Rao, S.S.R.: Effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. — Plant Soil Environ. 53: 465–472, 2007a.

    CAS  Google Scholar 

  9. Ashraf, M., Akram, N.A., Arteca, R.N., Foolad, M.R.: The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. — Crit. Rev. Plant. Sci. 29: 162–190, 2010.

    CAS  Article  Google Scholar 

  10. Ashraf, M., Foolad, M.R.: Roles of glycinebetaine and proline in improving plant abiotic stress resistance. — Environ. exp. Bot. 59: 206–216, 2007.

    CAS  Article  Google Scholar 

  11. Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant. Physiol. Biochem. 47: 1–8, 2009.

    CAS  PubMed  Article  Google Scholar 

  12. Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.

    Article  Google Scholar 

  13. Caño-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-García, S., Cheng, J.C., Nam, K.H., Li, J., Chory, J.: BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. — Development 131: 5341–5351, 2004.

    PubMed  Article  Google Scholar 

  14. Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Binzeng, H., Zhao, H., Kuai, B.: Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. — Physiol. Plant. 123: 57–66, 2005.

    CAS  Article  Google Scholar 

  15. Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan, N.B.S., Sangwan, R.S.: Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bul1 mutant, defective in the Δ(7)-sterol-C5-desaturation step leading to brassinosteroids biosynthesis. — Planta 212: 659–672, 2001.

    CAS  PubMed  Article  Google Scholar 

  16. Choe, S.: Brassinosteroid biosynthesis and inactivation. — Physiol. Plant. 126: 539–548, 2006.

    CAS  Article  Google Scholar 

  17. Choudhary, S.P., Yu, J.Q., Yamaguchi-Shinozaki, K., Shinozaki, K., Lam-Son, P.T.: Benefits of brassinosteroid crosstalk. — Trends Plant Sci. 17: 594–605, 2012.

    CAS  PubMed  Article  Google Scholar 

  18. Clouse, S.D., Sasse, J.M.: Brassinosteroids: essential regulators of plant growth and development. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 427–451, 1998.

    CAS  PubMed  Article  Google Scholar 

  19. Divi, U.K., Rahman, T., Krishna, P.: Brassinosteroids-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. — BMC Plant Biol. 10: 151, 2010.

    PubMed Central  PubMed  Article  Google Scholar 

  20. Ding, H.D., Zhu, X.H., Zhu, Z.W., Yang, S.J., Zha, D.S., Wu, X.X.: Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. — Biol. Plant. 56: 767–770, 2012

    CAS  Article  Google Scholar 

  21. Fariduddin, Q., Khanam, S., Hasan, S.A., Ali, B., Hayat, S., Ahmad, A.: Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L. — Acta Physiol. Plant. 31: 889–897, 2009a.

    CAS  Article  Google Scholar 

  22. Fariduddin, Q., Yusuf, M., Chalkoo, S., Hayat, S., Ahmad, A.: 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. — Photosynthetica 49: 55–64, 2011.

    CAS  Article  Google Scholar 

  23. Fariduddin, Q., Yusuf, M., Hayat, S., Ahmad, A.: Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. — Environ. exp. Bot. 66: 418–424, 2009b.

    CAS  Article  Google Scholar 

  24. Friedrichsen, D.M., Joazeiro, C.A.P., Li, J., Hunter, T., Chory, J.: Brassinosteroid-Insensitive-I is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. — Plant Physiol. 123: 1247–1255, 2000.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Gille, G., Sigler, K.: Oxidative stress in living cells. — Folia microbiol. 2: 131–152, 1995.

    Article  Google Scholar 

  26. Goda, H., Shimada, Y., Asami, T., Fujioka, S., Yoshida, S.: Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. — Plant Physiol. 130: 1319–1334, 2002.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. Gomes, M.M.A.: Physiological effects related to brassinosteroid application in plants. — In: Hayat, S., Ahmad, A. (ed.): Brassinosteroids: a Class of Plant Hormones. Pp. 193–--. Springer, Dordrecht — Heidelberg — London — New York 2011.

    Chapter  Google Scholar 

  28. Gratao, P.L, Gomes-Junior, R.A., Delite, F.S., Lea, P.J., Azevedo, R.A.: Antioxidants stress responses of plants to cadmium. — In: Khan, N.A., Samiullah (ed.): Cadmium Toxicity and Tolerance in Plants. Pp. 1–34. Alpha Science International, Oxford 2006.

    Google Scholar 

  29. Hasan, S.A., Hayat, S., Ali, B., Ahmad, A.: 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. — Environ. Pollut. 151: 60–66, 2008.

    CAS  PubMed  Article  Google Scholar 

  30. Hayat, S., Ali, B., Hasan, S.A., Ahmad, A.: Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. — Environ. exp. Bot. 60: 33–41, 2007.

    CAS  Article  Google Scholar 

  31. Hayat, S., Hasan, S.A., Yusuf, M., Hayat, Q., Ahmad, A.: Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. — Environ. exp. Bot. 69: 105–112, 2010.

    CAS  Article  Google Scholar 

  32. Hopkins, W.J.: Physiology of plants under stress. — In: Hopkins, W.J. (ed.): Introduction to Plant Physiology. 3rd Ed. Pp. 459–479. John Wiley & Sons, New York 1995.

    Google Scholar 

  33. Huang, L.F., Zheng, J.H., Zhang, Y.Y., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q.: Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: the cause for midday depression in CO2 assimilation. — Sci. Hort. 110: 214–218, 2006.

    CAS  Article  Google Scholar 

  34. Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M., Panneerselvam, R.: Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. — Colloids Surf. B: Biointerfaces 61: 298–303, 2008.

    CAS  PubMed  Article  Google Scholar 

  35. Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. — Biol. Plant. 51: 355–358, 2007.

    CAS  Article  Google Scholar 

  36. Janeckzo, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., Skoczowski, A.: Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. — Photosynthetica 43: 293–298, 2005.

    Article  Google Scholar 

  37. Jiang, Y.P., Cheng, F., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Chen, Z., Yu, J.Q.: Cellular glutathione redox homeostasis plays an important role in the brassinosteroidinduced increase in CO2 assimilation in Cucumis sativus. — New Phytol. 194: 932–943, 2012.

    CAS  PubMed  Article  Google Scholar 

  38. Kagale, S., Divi, U.K., Krochko, J.E., Keller, W.A., Krishna, P.: Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. — Planta 225: 353–364, 2007.

    CAS  PubMed  Article  Google Scholar 

  39. Kim, T.W., Wang, Z.Y.: Brassinosteroid signal transduction from receptor kinases to transcription factors. — Annu. Rev. Plant Physiol. Plant mol. Biol. 61: 681–704, 2010.

    CAS  Google Scholar 

  40. Kinoshita, K., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., Chory, J.: Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. — Nature 433: 167–171, 2005.

    CAS  PubMed  Article  Google Scholar 

  41. Li, Y.H., Liu, Y.J., Xu, X.L., Jin, M., An, L.Z., Zhang, H.: Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. — Biol. Plant. 56: 192–196, 2012

    Article  Google Scholar 

  42. Lin, Y.C., Kao, C.H.: Proline accumulation induced by excess nickel in detached rice leaves. — Biol. Plant. 51: 351–354, 2007.

    CAS  Article  Google Scholar 

  43. Mandava, N.B.: Plant growth-promoting brassinosteroids. — Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 23–52, 1988.

    CAS  Article  Google Scholar 

  44. Mazorra, L.M., Nunez, M., Hechavarria, M., Coll, F., Sanchez-Blanco, M.J.: Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. — Biol. Plant. 45: 593–596, 2002.

    CAS  Article  Google Scholar 

  45. Mitchell, J.W., Mandhava, N.B., Worley, J.F., Plimmer, J.R., Smith, M.V.: Brassins — a new family of plant hormones from rape pollen. — Nature 255: 1065–1066, 1970.

    Article  Google Scholar 

  46. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., Van Breusegem, F.: ROS signaling: the new wave? — Trends Plant Sci. 16: 300–309, 2011.

    CAS  PubMed  Article  Google Scholar 

  47. Mussig, C., Fischer, S., Altamann, T.: Brassinosteroid-regulated gene expression. — Plant Physiol. 129: 1241–1251, 2002.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Navrot, N., Rouhier, N., Gelhaye, E., Jacquot, J.: Reactive oxygen species generation and antioxidant systems in plant mitochondria. — Physiol. Plant. 129: 185–195, 2007.

    CAS  Article  Google Scholar 

  49. Nemhauser, Jennifer, L., Mockler, T.C., Chory, J.: Interdependency of brassinosteroid and auxin signaling in Arabidopsis. — PLoS Biol. 2: E258, 2004.

    PubMed Central  PubMed  Article  Google Scholar 

  50. Nunez, M., Mazzafera, P., Mazorra, L.M., Siqueira, W.J., Zullo, M.A.T.: Influence of a brassinsteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. — Biol Plant. 47: 67–70, 2003.

    CAS  Article  Google Scholar 

  51. Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogues, S.: Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. — J. Plant. Growth. Regul. 27: 49–57, 2008.

    CAS  Article  Google Scholar 

  52. Özdemir, F., Bor, M., Demiral, T., Turkan, I.: Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. — Plant. Growth Regul. 42: 203–211, 2004.

    Article  Google Scholar 

  53. Prasad, M.N.V.: Heavy Metal Stress in Plants — from Biomolecules to Ecosystems. — Springer-Verlag, Berlin — Heidelberg. 2004.

    Book  Google Scholar 

  54. Ruley, A.T., Sharma, N.C., Sahi, S.V.: Antioxidant defense in a lead accumulating plant, Sesbania drummondii. — Plant Physiol. Biochem. 42: 899–906, 2004.

    CAS  PubMed  Article  Google Scholar 

  55. Salveit, M.E.: Chilling injury is reduced in cucumber and rice seedlings in tomato pericarp discs by heat-shocks applied after chilling. — Post. Harvest. Biol. Technol. 21: 169–177, 2001.

    Article  Google Scholar 

  56. Sasse, J.M.: Physiological actions of brassinosteroids: an update. — Plant. Growth Regul. 22: 276–288, 2003.

    CAS  Google Scholar 

  57. Sharma, P., Bhardwaj, R., Arora, N., Arora, H.K., Kumar, A.: Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. — Biol. Plant. 52: 767–770, 2008.

    CAS  Article  Google Scholar 

  58. Sharma, P., Bhardwaj, R.: Effects of 24-epibrassinolide on growth and metal uptake Brassica juncea L. under copper metal stress. — Acta Physiol. Plant. 29: 259–263, 2007.

    CAS  Article  Google Scholar 

  59. Sharma, P., Dubey, R.S.: Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. — J. Plant. Physiol. 162: 854–864, 2005.

    CAS  PubMed  Article  Google Scholar 

  60. Simoes-Araujo, J.L., Rumjanek, N.G., Margis-Pinheiro, M.: Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. — Braz. J. Plant. Physiol. 15: 33–41, 2003.

    CAS  Article  Google Scholar 

  61. Simonovicova, M., Tamas, L., Huttova, J., Mistrik. I.: Effect of aluminum on oxidative stress related enzymes activities in barley roots. — Biol Plant. 48: 261–266, 2004.

    CAS  Article  Google Scholar 

  62. Singh, I., Shono, M.: Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. — Plant. Growth Regul. 47: 111–119, 2005.

    CAS  Article  Google Scholar 

  63. Steffens, G.L.: US department of agriculture Brassins project: 1970–1980. — In: Cutler, H.G., Yokota, T., Adam, G. (ed.): Brassinosteroids: Chemistry, Bioactivity, and Applications. Pp. 2–17. American Chemical Society, Washington 1991.

    Chapter  Google Scholar 

  64. Taiz, L., Zeiger, E.: Plant Physiology. Pp. 607–611. Sinauer Associates, Sunderland 2004.

    Google Scholar 

  65. Teale, W.D., Ditengou, F.A., Dovzhenko, A.D., Li, X., Molendijk, A.M., Ruperti, B., Paponov, I., Palme, K.: Auxin as a model for the integration of hormonal signal processing and transduction. — Mol. Plant 1: 229–237, 2008.

    CAS  PubMed  Article  Google Scholar 

  66. Turkan, I., Demiral, T.: Recent developments in understanding salinity tolerance. — Environ. exp. Bot. 67: 2–9, 2009.

    Article  Google Scholar 

  67. Upreti, K.K., Murti, G.S.R.: Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. — Biol. Plant. 48: 407–411, 2004.

    CAS  Article  Google Scholar 

  68. Vardhini, B.V., Rao, S.S.R.: Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. — Plant. Growth Regul. 41: 25–31, 2003.

    CAS  Article  Google Scholar 

  69. Vassilev, A., Yordanov, I.: Reductive analysis of factors limiting growth of cadmium-treated plants: a review. — Bulg. J. Plant Physiol. 23: 114–133, 1997.

    CAS  Google Scholar 

  70. Wang, Z.Y., Wang, Q., Chong, K., Wang, F., Wang, L., Bai, M., Jia, C.: The brassinosteroid signal transduction pathway. — Cell. Res. 16: 427–434, 2006.

    PubMed Central  PubMed  Article  Google Scholar 

  71. Xia, X.J., Huang, L.-F., Zhou, Y.-H., Mao, W.-H., Shi, K., Wu, J.-X., Asami, T., Chen, Z., Yu, J.-Q.: Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. — Planta 230: 1185–1196, 2009.

    CAS  PubMed  Article  Google Scholar 

  72. Yusuf, M., Fariduddin, Q., Ahmad, A.: 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. — Plant Physiol. Biochem. 57: 143–153, 2012.

    CAS  PubMed  Article  Google Scholar 

  73. Yusuf, M.: Effect of brassinosteroids on nickel induced changes in Vigna radiata. — PhD. Thesis, Aligarh Muslim University, Aligarh 2011.

    Google Scholar 

  74. Yusuf, M., Fariduddin, Q., Hayat, S., Hasan, S.A., Ahmad, A.: Protective responses of 28-homobrssinolide in cultivars of Triticum aestivum with different levels of nickel. — Arch. Environ. Contam. Toxicol. 60: 68–76, 2011.

    CAS  PubMed  Article  Google Scholar 

  75. Zhang, J.H., Huang, W.D., Liu, Y.P., Pan, Q.H.: Effects of temperature acclimation pre-treatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. — J. Integ. Plant. Biol. 47: 959–970, 2005.

    Article  Google Scholar 

  76. Zhang, M., Zhai, Z., Tian, X., Duan, L., Li, Z.: Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). — Plant Growth Regul. 56: 257–264, 2008.

    CAS  Article  Google Scholar 

  77. Zurek, D.M., Rayle, D.L., McMorris, T.C., Clouse, S.D.: Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid regulated stem elongation. — Plant Physiol. 104: 503–513, 1994.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Q. Fariduddin.

Additional information

Acknowledgements: M. Yusuf gratefully acknowledges the financial assistance rendered by the University Grant Commission, New Delhi, India in a form of the Dr. D.S. Kothari Postdoctoral Fellowship [F.4-2/2006(BSR) 13-608/2012/BSR].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fariduddin, Q., Yusuf, M., Ahmad, I. et al. Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58, 9–17 (2014). https://doi.org/10.1007/s10535-013-0374-5

Download citation

Additional key words

  • antioxidant system
  • drought
  • heavy metals
  • high temperature
  • low temperature
  • oxidative stress
  • photosynthesis