Skip to main content

Dynamics of heat-shock induced DNA damage and repair in senescent tobacco plants

Abstract

Oxidative stress plays an important role in plant ageing and in response to different stresses. Oxidative DNA damage, unless repaired, may have detrimental consequences and increase genetic instability. Therefore, we determined the role of heat-shock induced oxidative stress on induction and repair of DNA damage in relation to oxidative stress tolerance in senescent tobacco plants. One-month-old (young) and three-month-old (senescent) plants were exposed to 42 °C for 2 and 4 h and left to recover at 26 °C for 24 and 72 h. The progression of senescence was characterized by the lower soluble protein and malondialdehyde content compared to young plants. Immediately after the heat shock, an increase in lipid peroxidation and guaiacol peroxidase activity, as well as DNA damage measured by the Comet assay were induced to higher extent in the young plants than in the senescent ones compared to their respective controls. Moreover, after 24-h recovery, the DNA damage further increased in the young plants whereas tendency of DNA repair was observed in the senescent plants. Upon 72-h recovery, no significant differences were noticed in all parameters studied (regardless of plant age) compared to the controls. The random amplified polymorphic DNA (RAPD) analysis confirmed genetic stability of the tobacco plants during the heat-shock exposures as well as the subsequent recovery periods.

This is a preview of subscription content, access via your institution.

Abbreviations

BSA:

bovine serum albumin

EMS:

ethyl methanesulfonate

MDA:

malondialdehyde

GPX:

guaiacol peroxidase

LMP:

low melting point

NMP:

normal melting point

PAGE:

polyacrylamide gel electrophoresis

PCR:

polymerase chain reaction

PVP:

polyvinylpyrrolidone

RAPD:

random amplified polymorphic DNA

ROS:

reactive oxygen species

TAE buffer:

Tris-acetate + EDTA buffer

TBA:

2-thiobarbituric acid

TBARS:

2-thiobarbituric acid reactive metabolites

TCA:

trichloroacetic acid

tDNA:

tail DNA

References

  • Abarca, D., Martin, M., Sabater, B.: Differential leaf stress responses in young and senescent plants. — Physiol. Plant. 113: 409–415, 2001.

    CAS  PubMed  Article  Google Scholar 

  • Ali, B.A., Hahn, E.J., Paek, K.Y.: Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalenopsis. — Plant Physiol. Biochem. 43: 213–223, 2005.

    CAS  PubMed  Article  Google Scholar 

  • Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P.: Protective role of antioxidant enzymes under high temperature stress. — Plant Sci. 171: 382–388, 2006.

    CAS  PubMed  Article  Google Scholar 

  • Asthir, B., Koundal, A., Bains, N.S.: Putrescine modulates antioxidant defense response in wheat under high temperature stress. — Biol. Plant. 56: 757–761, 2012.

    CAS  Article  Google Scholar 

  • Atienzar, F.A., Evenden, A.J., Jha, A.N., Depledge, M.H.: Use of the random amplified polymorphic DNA (RAPD) for the detection of DNA damage and mutations: possible implication of confounding factors. — Biomarkers. 7: 94–101, 2002.

    CAS  PubMed  Article  Google Scholar 

  • Atienzar, F.A., Jha, A.N.: The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. — Mutat. Res. 613: 76–102, 2006.

    CAS  PubMed  Article  Google Scholar 

  • Behera, S.K., Nayak, L., Biswal, B.: Senescing leaves possess potential for stress adaptation: the developing leaves acclimated to high light exhibit increased tolerance to osmotic stress during senescence. — J. Plant Physiol. 160: 125–131, 2003.

    CAS  PubMed  Article  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    CAS  PubMed  Article  Google Scholar 

  • Cadet, J., Douki, T., Ravanat, J.L.: Oxidatively generated base damage to cellular DNA. — Free Radicals Biol. Med. 49: 9–21, 2010.

    CAS  Article  Google Scholar 

  • Chaitanya, K.V., Sundar, D., Masilamani, S., Ramachandra Reddy, A.: Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. — Plant Growth Regul. 36: 175–180, 2002.

    CAS  Article  Google Scholar 

  • Chance, B., Maehly, A.C.: Assay of catalases and peroxidases. — In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Pp. 764–775. Academic Press, New York 1955.

    Google Scholar 

  • Chen, H., Yan, C., Jiang, X., Dai, Y.R.: Hyperthermia-induced apoptosis and the inhibition of DNA laddering by zinc supplementation and withdrawal of calcium and magnesium in suspension culture of tobacco cells. — Cell Mol. Life Sci. 55: 303–309, 1999.

    CAS  Article  Google Scholar 

  • Dat, J., Van den Abeele, S., Vranova, E., Van Montagu, M., Inze, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. — Cell Mol. Life Sci. 57: 779–795, 2000.

    CAS  PubMed  Article  Google Scholar 

  • Derocher, A.E., Helm, K.W., Lauzon, L.M., Vierling, E.: Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. — Plant Physiol. 96: 1038–1046, 1991.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Gechev, T., Willekens, H., Van Montagu, M., Inzé, D., Van Camp, W., Toneva, V., Minkov, I.: Different responses of tobacco antioxidant enzymes to light and chilling stress. — J. Plant Physiol. 160: 509–515, 2003.

    CAS  PubMed  Article  Google Scholar 

  • Gichner, T., Ptacek, O., Stavreva, D.A., Plewa, M.J.: Comparison of DNA damage in plants as measured by single cell gel electrophoresis and somatic leaf mutations induced by monofunctional alkylating agents. — Environ. Mol. Mutag. 33: 279–286, 1999.

    CAS  Article  Google Scholar 

  • Gichner, T., Ptacek, O., Stavreva, D.A., Wagner, E.D., Plewa, M.J.: A comparison of DNA repair using the comet assay in tobacco seedlings after exposure to alkylating agents or ionizing radiation. — Mutat. Res. 470: 1–9, 2000.

    CAS  PubMed  Article  Google Scholar 

  • Gichner, T., Mukherjee, A., Velemínský, J.: DNA staining with the fluorochromes EtBr, DAPI and YOYO-1 in the comet assay with tobacco plants after treatment with ethyl methanesulphonate, hyperthermia and DNase-I. — Mutat. Res. 605: 17–21, 2006.

    CAS  PubMed  Article  Google Scholar 

  • Gong, H., Chen, G., Li, F., Wang, X., Hu, Y., Bi, Y.: Involvement of G6PDH in heat stress tolerance in the calli from Przewalskia tangutica and Nicotiana tabacum. — Biol. Plant. 56: 422–430, 2012.

    CAS  Article  Google Scholar 

  • Gorinova, N., Nedkovska, M., Todorovska, E., Simova-Stoilova, L., Stoyanova, Z., Georgieva, K., Demirevska-Kepova, K., Atanassov, A., Herzig, R.: Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). — Environ. Pollut. 145: 161–170, 2007.

    CAS  PubMed  Article  Google Scholar 

  • Gülen, H., Çetinkaya, C., Kadóğlu, M., Kesici, M., Cansev, A., Eriş, A.: Peroxidase activity and lipid peroxidation in strawberry (Fragaria × ananassa) plants under low temperature. — J. Biol. environ. Sci. 2: 95–100, 2008.

    Google Scholar 

  • Gülen, H., Eris, A.: Effect of heat stress on peroxidase activity and total protein content in strawberry plants. — Plant Sci. 166: 739–744, 2004.

    Article  Google Scholar 

  • Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W., Martin, M.E.: Global temperature change. — Proc. nat. Acad. Sci. USA 103: 14288–14293, 2006.

    CAS  PubMed  Article  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts: kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    CAS  PubMed  Article  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 227: 680–685, 1970.

    CAS  PubMed  Article  Google Scholar 

  • Lim, P.O., Kim, H.J., Nam, H.H.: Leaf senescence. — Annu. Rev. Plant. Biol. 58: 115–136, 2007.

    CAS  PubMed  Article  Google Scholar 

  • Luo, C., He, X.-H., Chen, H., Hu, Y., Ou, S.-J.: Molecular cloning and expression analysis of four actin genes (MiACT) from mango. — Biol. Plant. 57: 238–244, 2013.

    CAS  Article  Google Scholar 

  • Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H., Liang, D.: Effects of high-temperature on activities and gene expression of enzymes involved in ascorbate-glutatione cycle in apple leaves. — Plant Sci. 175: 761–766, 2008.

    CAS  Article  Google Scholar 

  • Madlung, A., Comai, L.: The effect of stress on genome regulation and structure. — Ann. Bot. 94: 481–495, 2004.

    CAS  PubMed  Article  Google Scholar 

  • Mancini, A., Buschini, A., Restivo, F.M., Rossi, C., Poli, P.: Oxidative stress as DNA damage in different transgenic tobacco plants. — Plant Sci. 170: 845–852, 2006.

    CAS  Article  Google Scholar 

  • Martins, M., Sarmento, D., Oliveira, M.M.: Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. — Plant Cell. Rep. 23: 492–496, 2004.

    CAS  PubMed  Article  Google Scholar 

  • Ohe, M., Rapolu, M., Mieda, T., Miyagawa, Y., Yabuta, Y., Yoshimura, K., Shigeoka, S.: Decline in leaf photooxidative-stress tolerance with age in tobacco. — Plant Sci. 168: 1487–1493, 2005.

    CAS  Article  Google Scholar 

  • Park, S.M., Hong, C.B.: Class I small heat-shock protein gives thermotolerance in tobacco. — J. Plant Physiol. 159: 25–30, 2002.

    CAS  Article  Google Scholar 

  • Peredo, E.L., Arroyo-Garcá, R., Revillaa, M.A.: Epigenetic changes detected in micropropagated hop plants. — J. Plant Physiol. 166: 1101–1111, 2009.

    CAS  PubMed  Article  Google Scholar 

  • Prochazkova, D., Sairam, R.K., Srivastava, G.C., Singh, D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. — Plant Sci. 161: 765–771, 2001.

    CAS  Article  Google Scholar 

  • Roldán-Arjona, T., Ariza, R.R.: Repair and tolerance of oxidative DNA damage in plants. — Mutat. Res. 681: 169–179, 2009.

    PubMed  Article  Google Scholar 

  • Rousset, N., Keminon, E., Eleouet, S., Le Neel, T., Auget, J.L., Vonarx, V., Carre, J., Lajat, Y., Patrice, T.: Use of alkaline comet assay to assess DNA repair after m-THPCPDT. — J. Photochem. Photobiol. B. 56: 118–31, 2000.

    CAS  PubMed  Article  Google Scholar 

  • Šrut, M., Štambuk, A., Klobučar G.I.V.: What is Comet assay not telling us: AFLP reveals wider aspects of genotoxicity.— Toxicol. Vitro 27: 1226–1232, 2013.

    Article  Google Scholar 

  • Tao, P., Liu, L., Wang, J.B.: Characterization of eight cytosolic sHSP genes and their expression in Capsella bursa-pastoris. — Biol. Plant. 56: 648–656, 2012.

    CAS  Article  Google Scholar 

  • Timperio, A.T., Egidi, M.G., Zolla, L.: Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). — J. Proteomics. 71: 391–411, 2008.

    CAS  PubMed  Article  Google Scholar 

  • Tuteja, N., Ahmada, P., Panda B.B., Tuteja, R.: Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. — Mutat. Res. 681:134–149, 2009.

    CAS  PubMed  Article  Google Scholar 

  • Wahid, A., Gelani, S., Ashrafa, M., Foolad, M.R.: Heat tolerance in plants: an overview. — Environ. exp. Bot. 61: 199–223, 2007.

    Article  Google Scholar 

  • Yin, H., Chen, Q., Yi, M.: Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. — Plant Growth Regul. 54: 45–54, 2008.

    CAS  Article  Google Scholar 

  • Yoshida, S.: Molecular regulation of leaf senescence. — Curr. Opin. Plant. Biol. 6: 79–84, 2003.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cvjetko.

Additional information

Acknowledgements: This study was supported by the Croatian Ministry of Science and Technology as a part of Projects Nos. 119-0982934-3110 and 119-1191196-1200

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cvjetko, P., Balen, B., Peharec Štefanić, P. et al. Dynamics of heat-shock induced DNA damage and repair in senescent tobacco plants. Biol Plant 58, 71–79 (2014). https://doi.org/10.1007/s10535-013-0362-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-013-0362-9

Additional key words

  • Comet assay
  • DNA polymorphism
  • oxidative stress
  • RAPD
  • temperature stress