Skip to main content
Log in

Effect of hydrogen peroxide on seedling growth and antioxidants in two wheat cultivars

  • Published:
Biologia Plantarum

Abstract

This study aimed to investigate seed germination, seedling growth, and antioxidative responses in two wheat cultivars, Ningchun and Xihan, exposed to different H2O2 concentrations. Ningchun exhibited higher germination rate but lower root and shoot growth than Xihan when exposed to H2O2 treatment. Assays using fluorescent dye H2DCFDA and propidium iodide showed a significantly enhanced H2O2 content and a cell elongation inhibition in H2O2-treated roots. The malondialdehyde content was elevated with increasing exogenous H2O2 concentration. Moreover, treatments of seedlings with H2O2 scavenger, catalase (CAT), and antioxidant, butylated hydroxytoluene, partly abolished H2O2-induced negative effect on root growth. In both untreated and H2O2-treated leaves, SOD activity in Ningchun was higher than that in Xihan, but POD and APX activities in Ningchun were lower than those in Xihan, leading to elevated H2O2 level in Ningchun leaves but decreased H2O2 content in Xihan ones under H2O2 treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

ASA:

ascorbate

BHT:

butylated hydroxytoluene

CAT:

catalase

EDTA:

ethylenediaminetetraacetic acid

GR:

glutathione reductase

H2DCFDA:

2’,7’-dichlorodihydrofluorescein diacetate

MDA:

malondialdehyde

NBT:

nitroblue tetrazolium

PI:

propidium iodide

POD:

peroxidase

SOD:

superoxide dismutase

References

  • Aebi, H.: Catalase. - In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 673–677. Academic Press, New York 1974.

    Chapter  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Candan, N., Tarhan, L.: Tolerance or sensitivity responses of Mentha pulegium to osmotic and waterlogging stress in terms of antioxidant defense systems and membrane lipid peroxidation. - Environ. exp. Bot. 75: 83–88, 2012.

    Article  CAS  Google Scholar 

  • Cano, A., Artes, F., Arnao, M.B., Sanchez-Bravo, J., Costa, M.A.: Influence of peroxides, ascorbate and glutathione on germination and growth in Lupinus albus L.. - Biol. Plant. 39: 457–461, 1997.

    Article  CAS  Google Scholar 

  • Christophe, B., Hayat, E.M.B., Françoise, C.: From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. - Compt. Rend. Biol. 331: 806–814, 2008.

    Article  Google Scholar 

  • Cruz de Carvalho, H.M.: Drought stress and reactive oxygen species: production, scavenging and signaling. - Plant Signal Behav. 3: 156–165, 2008.

    Article  PubMed  Google Scholar 

  • Dhindsa, R.S., Matowe, W.: Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. - J. exp. Bot. 32: 79–91, 1981.

    Article  CAS  Google Scholar 

  • Donahue, J.L., Okpodu, C.M., Cramer, C.L., Grabau, E.A., Alscher, R.G.: Responses of antioxidants to paraquat in pea leaves. - Plant. Physiol. 113: 249–257, 1997.

    PubMed  CAS  Google Scholar 

  • Forman, H.J.: Use and abuse of exogenous H2O2 in studies of signal transduction. - Free Radical Biol. Med. 42: 926–932, 2007.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Lelandais, M., Kunert, K.J.: Photooxidative stress in plants. - Physiol. Plant. 92: 696–717, 1994.

    Article  CAS  Google Scholar 

  • Fridovich, I.: Biological effects of the superoxide radical. - Arch. Biochem. Biophys. 247: 1–11, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I., Laloi, C.: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. - Biol. Essays 28: 1091–1101, 2006.

    CAS  Google Scholar 

  • Gondim, F.A., Gomes-Filho, E., Lacerda, C.F., Prisco, J.T., Azevedo Neto, A.D., Marques, E.C.: Pretreatment with H2O2 in maize seeds: effects on germination and seedling acclimation to salt stress. - Braz. J. Plant Physiol. 22: 103–112, 2010.

    Google Scholar 

  • Goud, P.B., Kachole, M.S.: Effect of exogenous hydrogen on peroxide and polyphenol oxidase in Cajanus cajan (L.) Millsp. detached leaves. - Int. J. Current Res. 3: 61–65, 2011.

    Google Scholar 

  • He, L.H., Gao, Z.Q., Li, R.Z.: Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. - African J. Biotechnol. 8: 6151–6157, 2009.

    CAS  Google Scholar 

  • Kabir, M., Zafar Iqbal, M., Shafiq, M., Farooqi, Z.R.: Reduction in germination and seedling growth of Thespesia populnea L., caused by lead and cadmium treatments. - Pakistan J. Bot. 40: 2419–2426, 2008.

    CAS  Google Scholar 

  • Karlsson, A., Nixon, J.B., McPhail, L.C.: Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. - J. Leuk. Biol. 67: 396–404, 2000.

    CAS  Google Scholar 

  • Karuppanapandian, T., Moon, J.C., Kim, C., Manoharan, K., Kim, W.: Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. - Aust. J. Crop Sci. 5: 709–725, 2011.

    CAS  Google Scholar 

  • Kennedy, D., Cronin, U.P., Wilkinson, M.G.: Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting. - Appl. environ. Microbiol. 7: 4657–4668, 2011.

    Article  Google Scholar 

  • Li, J.T., Qiu, Z.B., Zhang, X.W., Wang, L.S.: Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. - Acta Physiol. Plant. 30: 835–842, 2011.

    Article  Google Scholar 

  • Li, S.W., Xue, L.G., Xu, S.J., An, L.Z.: Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. - Environ. exp. Bot. 65: 63–71, 2009.

    Article  CAS  Google Scholar 

  • Lin, C.C., Kao, C.H.: Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. - Plant Soil 230: 135–143, 2001.

    Article  CAS  Google Scholar 

  • Liu, Y., Wan, Q., Wu, R., Wang, X., Wang, H., Wang, Z., Shi C., Bi, Y.: Role of hydrogen peroxide in regulating glucose-6-phosphate dehydrogenase activity under salt stress. - Biol. Plant. 56: 313–320, 2012.

    Article  CAS  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405–410, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Ogawa, K., Iwabuchi, M.: A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. - Plant Cell Physiol. 42: 286–291, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ozden, M., Demirel, U., Kahraman, A.: Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. - Sci. Hort. 119: 163–168, 2009.

    Article  CAS  Google Scholar 

  • Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G., Grill, E., Schroeder, J.I.: Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. - Nature 406: 731–734, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Peng, L.T., Yang, S.Z., Li, Q., Jiang, Y.M., Joyce, D.C.: Hydrogen peroxide treatments inhibit the browning of freshcut Chinese water chestnut. - Post Biol. Technol. 47: 260–266, 2008.

    Article  CAS  Google Scholar 

  • Rao, M.V., Paliyath, G., Ormrod, D.P.: Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. - Plant Physiol. 110: 125–136, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Sergiev, I., Alexieva, V., Karanov, E.: Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. - Compt. Rend. Acad. Bulg. Sci. 51: 121–124, 1997.

    Google Scholar 

  • Singh, H.P., Batish, D.R., Kohli, R.K., Arora, K.: Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. - Plant Growth Regul. 53: 65–73, 2007.

    Article  CAS  Google Scholar 

  • Upadhyay, R.K., Panda, S.K.: Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). - Compt. Rend. Biol. 332: 623–32, 2009.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Matsumoto, H.: Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. - Plant Physiol. 125: 199–208, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y.L., Zhang, Y.Y., Lu, J., Zhang, H., Liu, Y., Jiang, Y., Shi, R.X.: Exogenous H2O2 treatment induced antioxidative responses and the signal regulation of proline accumulation in halophyte Nitraria tangutorum Bobr. callus. - Biol. Plant. 56: 330–336, 2012.

    Article  CAS  Google Scholar 

  • Zhang, X.L., Jia, X.F., Yu, B., Gao, Y., Bai, J.G.: Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light. - Sci. Hort. 129: 656–662, 2011.

    Article  CAS  Google Scholar 

  • Zhou, Q.: The measurement of malondialdehyde in plants. - In: Zhou, Q. (ed): Methods in Plant physiology. Pp. 72–74. China Agricultural Press, Beijing 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.L. Yang.

Additional information

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 31160088) and Program for New Century Excellent Talents at University of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Li, X., Yang, Y. et al. Effect of hydrogen peroxide on seedling growth and antioxidants in two wheat cultivars. Biol Plant 57, 487–494 (2013). https://doi.org/10.1007/s10535-013-0312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-013-0312-6

Additional key words

Navigation