Biologia Plantarum

, Volume 57, Issue 2, pp 395–400 | Cite as

Overexpression of homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) enhances α-tocopherol content in transgenic tobacco

  • M. C. Harish
  • P. Dachinamoorthy
  • S. Balamurugan
  • S. Bala Murugan
  • R. SathishkumarEmail author
Brief Communication


Photosynthetic organisms synthesize the amphipathic antioxidants called tocopherols which are essential components of the human diet. To increase the α-tocopherol (vitamin E) content, Arabidopsis genes encoding homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) were constitutively expressed individually and in combination (HPT:TC) in tobacco plant by Agrobacterium mediated transformation. The transgene was confirmed by polymerase chain reaction (PCR), transgene expression was studied by reverse transcriptase (RT)-PCR, integration of the transgene in the plant genome was confirmed by Southern blot, and α-tocopherol content was quantified using high performance liquid chromatography (HPLC). The α-tocopherol content in transgenic tobacco plants expressing HPT, TC, and HPT:TC was increased by 5.4-, 4.0-, and 7.1-fold, respectively, when compared to the wild type (WT). These results indicate that, the HPT and TC activities are critical for enhancing the vitamin E content in tobacco plants.

Additional key words

Agrobacterium mediated transformation RT-PCR Southern blot 





cetyltrimethylammonium bromide




ferric reducing antioxidant power


high performance liquid chromatography


homogentisate phytyltransferase


indoleacetic acid


Murashige and Skoog


reverse transcriptase — polymerase chain reaction


tocopherol cyclase


wild type


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benzie, I.E.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. — Anal. Biochem. 239: 70–76, 1996.PubMedCrossRefGoogle Scholar
  2. Caretto, S., Bray-Speth, E., Fachechi, C., Gala, R., Zacheo, G., Giovinazzo, G.: Enhancement of vitamin E production in sunflower cell cultures. — Plant Cell Rep. 23: 174–179, 2004.PubMedCrossRefGoogle Scholar
  3. Chory, J., Reinecke, D., Sim, S., Washburn, T., Brenner, M.: A role for cytokinins in deetiolation in Arabidopsis. — Plant Physiol. 104: 339–347, 1994.PubMedGoogle Scholar
  4. Chen, D.F., Zhang, M., Wang, Y.Q., Chen, X.W.: Expression of γ-tocopherol methyltransferase gene from Brassica napus increased α-tocopherol content in soybean seed. — Biol. Plant. 56: 131–134, 2012.CrossRefGoogle Scholar
  5. Collakova, E., DellaPenna, D.: Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. — Plant Physiol. 131: 632–642, 2003a.PubMedCrossRefGoogle Scholar
  6. Collakova, E., DellaPenna, D.: The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. — Plant Physiol. 133: 930–940, 2003b.PubMedCrossRefGoogle Scholar
  7. Falk, J., Andersen, G., Kernebeck, B., Krupinska, K.: Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. — FEBS. Lett. 540: 35–40, 2003.Google Scholar
  8. Falk, J., Brosch, M., Schafer, A., Braun, S., Krupinska, K.: Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenylpyruvate dioxygenase. — J. Plant Physiol. 162: 738–742, 2005.PubMedCrossRefGoogle Scholar
  9. George, B., Kaur. C., Khurdiya, D.S., Kapoor, H.C.: Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. — Food Chem. 84: 45–51, 2004.CrossRefGoogle Scholar
  10. Grusak, M.A., DellaPenna, D.: Improving the nutrient composition of plants to enhance human nutrition and health. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 133–161, 1999.PubMedCrossRefGoogle Scholar
  11. Gyamfi, M.A., Yonamine, M., Aniya, Y.: Free radical scavenging action of medicinal herbs from Ghana Thonningia sanguinea on experimentally-induced liver injuries. — Gen. Pharmacol. 32: 661–667, 1999.PubMedCrossRefGoogle Scholar
  12. Hofgen, R., Willmitzer, L.: Storage of competent cells for Agrobacterium transformation. — Nucl. Acids Res. 16: 9877, 1988.PubMedCrossRefGoogle Scholar
  13. Hugly, S., Somerville, C.: A Role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. — Plant Physiol. 99: 197–202, 1992.PubMedCrossRefGoogle Scholar
  14. Kanwischer, M., Porfirova, S., Bergmuller, E., Dormann, P.: Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. — Plant Physiol. 137: 713–723, 2005.PubMedCrossRefGoogle Scholar
  15. Karunanandaa, B., Qi, Q., Hao, M., Baszis, S., Jensen, P., Wong, Y.H.H., Jiang, J., Venkatramesh, M., Gruys, K.J., Moshiri, F., Post-Beittenmiller, D., Weiss, J.D., Valentin, H.E.: Metabolically engineered oilseed crops with enhanced seed tocopherol. — Metabol. Eng. 7: 384–400, 2005.CrossRefGoogle Scholar
  16. Klein, B.P., Perry, A.K.: Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. — J. Food Sci. 47: 941–945, 1982.CrossRefGoogle Scholar
  17. Lee, K., Lee, S.M., Park, S.R., Jung, J., Moon, J.K., Cheong, J.J., Kim, M.: Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.). — Mol. Cells 24: 301–306, 2007.PubMedGoogle Scholar
  18. Li, Y., Wang, G., Hou, R., Zhou, Y., Gong, R., Sun, X., Tang, K.: Engineering tocopherol biosynthetic pathway in lettuce. — Biol. Plant. 55: 453–460, 2011.CrossRefGoogle Scholar
  19. Majer, P., Stoyanova, S., Hideg, E.: Do leaf total antioxidant capacities (TAC) reflect specific antioxidant potentials? — A comparison of TAC and reactive oxygen scavenging in tobacco leaf extracts. — J. Photochem. Photobiol. B 100: 38–43, 2010.PubMedCrossRefGoogle Scholar
  20. Marcel, A.K., Jansen, R.E., Noort, V.D., Adillah Tan, M.Y., Prinsen, E., Lagrimini, M.L., Thorneley, R.N.F.: Phenoloxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. — Plant Physiol. 126: 1012–1023, 2001.CrossRefGoogle Scholar
  21. Munne-Bosch, S., Alegre, L.: The function of tocopherols and tocotrienols in plants. — Crit. Rev. Plant Sci. 21: 31–57, 2002.Google Scholar
  22. Munne-Bosch, S., Falk, J.: New insights into the function of tocopherols in plants. — Planta. 218: 323–326, 2003.PubMedCrossRefGoogle Scholar
  23. Rippert, P., Scimemi, C., Dubald, M., Matringe, M.: Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. — Plant Physiol. 134: 92–100, 2004.PubMedCrossRefGoogle Scholar
  24. Rise, M., Cojocaru, M., Gottlieb, H.E., Goldschmidt, E.E.: Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. — Plant Physiol. 89: 1028–1030, 1989.PubMedCrossRefGoogle Scholar
  25. Seo, Y.S., Kim, S.K., Harn, C.H., Kim, W.T.: Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. — Phytochemistry 72: 321–329, 2011.PubMedCrossRefGoogle Scholar
  26. Spanos, G.A., Wrolstad, R.E.: Influence of processing and storage of the phenolic composition of Thompson seedless grape juice. — J. Sci. Food Agr. 38: 1565–1571, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. C. Harish
    • 1
    • 2
  • P. Dachinamoorthy
    • 1
  • S. Balamurugan
    • 1
  • S. Bala Murugan
    • 1
  • R. Sathishkumar
    • 1
    • 2
    Email author
  1. 1.Plant Genetic Engineering Laboratory, Department of BiotechnologyBharathiar UniversityCoimbatoreIndia
  2. 2.DRDO-BU Centre for Life SciencesBharathiar UniversityCoimbatoreIndia

Personalised recommendations