Advertisement

Biologia Plantarum

, Volume 57, Issue 1, pp 63–69 | Cite as

Molecular cloning and characterization of a chlorophyll degradation regulatory gene from bamboo

  • Y. -X. Chen
  • Q. Wei
  • B. -K. Kuai
  • Y. -L. DingEmail author
Article
  • 378 Downloads

Abstract

Leaf senescence constituted the final stage of leaf development and it is always accompanied by the leaf yellowing. The non-yellowing gene (NYE1), initially identified from Arabidopsis in our laboratory, is a key regulatory gene responsible for chlorophyll degradation during senescence. In this study, an orthologue of AtNYE1 was isolated from the bamboo (Bambusa emeiensis cv. Viridiflavus) and tentatively named BeNYE1. The full length sequence of 1 386 bp contains an open reading frame of 801 bp. The protein encoded by BeNYE1 consists of 266 amino acids. Sequence analysis revealed that BeNYE1 had high similarity with other NYE/SGR proteins from various monocotyledon species. BeNYE1 was strongly induced by natural senescence and dark-induced senescence in bamboo. Driven by a 1.5 kb upstream fragment of AtNYE1, BeNYE1 could rescue the stay-green phenotype of nye1-1. The constitutive over-expression of BeNYE1 could accelerate the chlorophyll degradation. These results indicated that BeNYE1 might play an important role in the regulation of chlorophyll degradation during leaf senescence in bamboo.

Additional key words

Bambusa emeiensis leaf senescence NYE1 stay-green phenotype 

Abbreviations

Chl

chlorophyll

NYE

non-yellowing

ORF

open reading frame

RACE

rapid amplification of cDNA ends

SGR

stay-green

UTR

untranslated region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alos, E., Roca, M., Iglesias, D.J., Minguez-Mosquera, M.I., Damasceno, C.M., Thannhauser, T.W., Rose, J.K., Talon, M., Cercos, M.: An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. — Plant Physiol. 147:1300–1315, 2008.PubMedCrossRefGoogle Scholar
  2. Armstead, I., Donnison, I., Aubry, S., Harper, J., Hortensteiner, S., James, C., Mani, J., Moffet, M., Ougham, H., Roberts, L., Thomas, A., Weeden, N., Thomas, H., King, I.: From crop to model to crop: identifying the genetic basis of the stay-green mutation in the Lolium/Festuca forage and amenity grasses. — New Phytol. 172: 592–597, 2006.PubMedCrossRefGoogle Scholar
  3. Armstead, I., Donnison, I., Aubry, S., Harper, J., Hortensteiner, S., James, C., Mani, J., Moffet, M., Ougham, H., Roberts, L., Thomas, A., Weeden, N., Thomas, H., King, I.: Crossspecies identification of Mendel’s I locus. — Science 315: 73, 2007.PubMedCrossRefGoogle Scholar
  4. Balazadeh, S., Riano-Pachon, D.M., Mueller-Roeber, B.: Transcription factors regulating leaf senescence in Arabidopsis thaliana. — Plant Biol. 10: 63–75, 2008.PubMedCrossRefGoogle Scholar
  5. Barry, C.S., McQuinn, R.P., Chung, M.Y., Besuden, A., Giovannoni, J.J.: Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the greenflesh and chlorophyll retainer mutations of tomato and pepper. — Plant Physiol. 147: 179–187, 2008.PubMedCrossRefGoogle Scholar
  6. Benedetti, C.E., Arruda, P.: Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. — Plant Physiol. 128: 1255–1263, 2002.PubMedCrossRefGoogle Scholar
  7. Borovsky, Y., Paran, I.: Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible staygreen gene. — Theor. appl. Genet. 117: 235–240, 2008.PubMedCrossRefGoogle Scholar
  8. Buchanan-Wollaston V.: Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. — Plant Physiol. 105: 839–846, 1994.PubMedCrossRefGoogle Scholar
  9. Chen, Y.X., Qiu, K., Kuai, B.K., Ding, Y.L.: Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis ‘Viridiflavus’). — Physiol. Plant. 142: 361–371, 2011.PubMedCrossRefGoogle Scholar
  10. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. — Plant J. 16: 735–743, 1998.PubMedCrossRefGoogle Scholar
  11. Guo, A.Y., Zhu, Q.H., Chen, X., Luo, J.C.: [GSDS: a gene structure display server.] — Yi Chuan 29: 1023–1026, 2007. [In Chinese]PubMedCrossRefGoogle Scholar
  12. Hensel, L.L., Grbic V., Baumgarten, D.A., Bleecker, A.B.: Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. — Plant Cell 5: 553–564, 1993.PubMedGoogle Scholar
  13. Hortensteiner, S.: Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. — Trends Plant Sci. 14: 155–162, 2009.PubMedCrossRefGoogle Scholar
  14. Hu, Z.L., Deng L., Yan, B., Pan, Y., Luo, M., Chen, X.Q., Hu, T.Z., Chen, G.P.: Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. — Biol. Plant. 55: 27–34, 2011.CrossRefGoogle Scholar
  15. Jiang, H.W., Li, M.R., Liang, N.B., Yan, H.B., Wei, Y.L., Xu, X., Liu, J.F., Xu, Z., Chen, F., Wu, G.J.: Molecular cloning and function analysis of the stay green gene in rice. — Plant J. 52: 197–209, 2007.PubMedCrossRefGoogle Scholar
  16. Kumar, S., Tamura, K., Nei, M.: MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. — Brief Bioinform. 5: 150–163, 2004.PubMedCrossRefGoogle Scholar
  17. Lim, P.O., Kim, H.J., Nam, H.G.: Leaf senescence. — Annu. Rev. Plant Biol. 58: 115–136, 2007.PubMedCrossRefGoogle Scholar
  18. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. — Methods 25: 402–408, 2001.PubMedCrossRefGoogle Scholar
  19. Lohman, K.N., Gan S., John, M.C., Amasino, R.M.: Molecular analysis of natural leaf senescence in Arabidopsis thaliana. — Physiol. Plant 92: 322–328, 1994.CrossRefGoogle Scholar
  20. Park, S.Y., Yu, J.W., Park, J.S., Li, J., Yoo, S.C., Lee, N.Y., Lee, S.K., Jeong, S.W., Seo, H.S., Koh, H.J., Jeon, J.S., Park, Y.I., Paek, N.C.: The senescence-induced stay-green protein regulates chlorophyll degradation. — Plant Cell 19: 1649–1664, 2007.PubMedCrossRefGoogle Scholar
  21. Ren, G.D., An, K., Liao, Y., Zhou, X., Cao, Y.J., Zhao, H.F., Ge, X.C., Kuai, B.K.: Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. — Plant Physiol. 144: 1429–1441, 2007.PubMedCrossRefGoogle Scholar
  22. Ren, G., Zhou, Q., Wu, S.X., Zhang, Y.F., Zhang, L.G., Huang, J.R., Sun, Z.F., Kuai, B.K.: Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. — J. Integr. Plant Biol. 52: 496–504, 2010.PubMedGoogle Scholar
  23. Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H., Kusaba, M.: Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. — Proc. nat. Acad. Sci. USA 104: 14169–14174, 2007.PubMedCrossRefGoogle Scholar
  24. Wei, Q., Guo, Y.J., Kuai, B.K.: Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. — Plant Cell Rep. 30: 1201–1207, 2011.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Y. -X. Chen
    • 1
    • 2
  • Q. Wei
    • 1
  • B. -K. Kuai
    • 3
  • Y. -L. Ding
    • 1
    Email author
  1. 1.Institute of Bamboo ResearchNanjing Forestry UniversityNanjingChina
  2. 2.Nanjing Forest Police CollegeNanjingChina
  3. 3.School of Life SciencesFudan UniversityShanghaiChina

Personalised recommendations