Skip to main content
Log in

Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis from leaf explants were examined. During the early stages of shoot organogenesis there was a decrease in superoxide dismutase (SOD) and an increase in catalase (CAT) activity, and later during organogenesis there was an increase in peroxidase (POD) and polyphenol oxidase (PPO) activity. Two highly regulated turning points may be distinguished regarding activities and isoforms of antioxidative enzymes: the initiation of shoot organogenesis and the shoot bud formation. Our data suggest the role of specific CAT, POD, SOD and PPO isoforms in separate processes during T. bellus direct shoot organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

BAP:

benzylaminopurine

CAT:

catalase

EDTA:

ethylenediaminetetraacetic acid

NAA:

naphtaleneacetic acid

POD:

peroxidase

PPO:

polyphenol oxidase

PVP:

polyvinylpyrrolidone

SOD:

superoxide dismutase

SDS:

sodium dodecyl sulfate

TRIS:

tris(hydroxymethyl)aminomethane

References

  • Andersone, U., Ievinsh, G.: Changes of morphogenic competence in mature Pinus sylvestris L. buds in vitro. — Ann. Bot. 90: 293–98, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Asada, K., Yoshikawa, K., Takahashi, M., Maeda, Y., Enmanji, K.: Superoxide dismutase from a blue-green algae Plectonema borianum. — J. biol. Chem. 250: 2801–2807, 1975.

    PubMed  CAS  Google Scholar 

  • Beauchamp, C., Fridowich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Maehly, A.C.: Assay of catalases and peroxidases. — In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Pp. 765–775. Academic Press, New York 1955.

    Google Scholar 

  • Claiborne, A.: Catalase activity. — In: Greenwald R.A. (ed.): Handbook of Methods for Oxygen Radical Research. Pp. 283–284. CRC Press, Boca Raton 1984.

    Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inze, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. — Cell. Mol. Life Sci. 57: 779–795, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, T.: Reducing properties and markers of lipid peroxidation in normal and hyperhydrating shoots of Prunus avium L. — J. Plant Physiol. 153: 339–346, 1995.

    Google Scholar 

  • Gaspar, T., Penel, C., Hagege, D., Grepin, H.: Peroxidases in plant growth, differentiation and developmental processes. — In: Lobarewski, J., Grepin, H., Penel, C., Gaspar, T. (ed.): Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. Pp. 249–280. University M. Curie-Sklodowska, Lublin and University of Geneva, Geneva 1991.

    Google Scholar 

  • Gillespie, J., Bidochka, M.J., Khachkatourians, G.G.: Separation and characterization of grasshopper hemolymph phenoloxidases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. — Comp. Biochem. Physiol. 98C: 351–358, 1991.

    CAS  Google Scholar 

  • Gupta, S.D., Datta, S.: Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. — Biol. Plant. 47: 179–183, 2003/4.

    Article  CAS  Google Scholar 

  • Hendry, G.A.F., Crawford, R.M.M.: Oxygen and environmental stress in plants — an overview. — Proc. roy. Soc. Edinbourgh 102B: 1–10, 1994.

    Google Scholar 

  • Jackson, P., Ricardo, C.P.P.: The changing peroxidase polymorphism in Lupinus albus during vegetative development. — Aust. J. Plant. Physiol. 25: 261–269, 1998.

    Article  CAS  Google Scholar 

  • Kay, L.E., Basile, D.V.: Specific peroxidase izoenzymes are correlated with organogenesis. — Plant Physiol. 84: 99–105, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during assembly of the head of bacteriophage T4. — Nature 227: 680–685, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O., Rosebrough, W., Farr, A., Randall, R.: Protein measurement with the Folin phenol reagent. — J. biol. Chem. 193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  • Malda, G., Backhaus, R.A., Martin C.: Alterations in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus. — Plant Cell Tissue Organ Cult. 58: 1–9, 1999.

    Article  CAS  Google Scholar 

  • Mayer, A.M.: Polyphenol oxidases in plants and fungi: going places? — Phytochemistry 67: 2318–2331, 2006.

    Article  PubMed  CAS  Google Scholar 

  • McCord, J.M., Fridovish, I.: Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). — J. biol. Chem. 244: 6049–6055, 1969.

    PubMed  CAS  Google Scholar 

  • Meratan, A.A., Ghaffari, S.-M., Niknam, V.: In vitro organogenesis and antioxidant enzymes activity in Acanthophyllum sordidum. — Biol. Plant. 53: 5–10, 2009.

    Article  CAS  Google Scholar 

  • Mitrović, A., Bogdanović, J.: Activities of antioxidative enzymes during Chenopodium rubrum L. ontogenesis in vitro. — Arch. biol. Sci. 60: 223–231, 2008.

    Article  Google Scholar 

  • Mitrović, A., Vinterhalter, B., Ćulafić, L.: In vitro propagation of Tacitus bellus. — J. Sci. agr. Res. 66: 33–39, 2005.

    Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Rajeswari, V., Paliwal, K.: Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L.f. (Benth). — Acta Physiol. Plant. 30: 825–832, 2008.

    Article  CAS  Google Scholar 

  • Sujatha, M., Sivaraj, N., Satya Prasad, M.: Biochemical and histological changes during in vitro organogenesis in Jatropha integerrima. — Biol. Plant. 43: 167–171, 2000.

    Article  CAS  Google Scholar 

  • Tang, W., Newton, R.J.: Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. — Plant Physiol. Biochem. 43: 760–769, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tian, M., Gu, Q., Zhu, M.: The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. — Plant Sci. 165: 701–707, 2003.

    Article  CAS  Google Scholar 

  • Vatankhah, E., Niknam, V., Ebrahimzadeh, H.: Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus. — Biol. Plant. 54: 509–514, 2010.

    Article  CAS  Google Scholar 

  • Woodbury, W., Spencer, A.K., Stahman, M.A.: An improved procedure using ferriccyanide for detecting catalase isozymes. — Anal. Biochem. 44: 301–305, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Yonghua, Q., Shanglong, Z., Asghar, S., Lingxiao, Z., Qiaoping, Kunsong, C., Changjie, X.: Regeneration mechanism of Toyonoka strawberry under different colour plastic films. — Plant Sci. 168: 1425–1431, 2005.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (No. 173017 and 173015) from the Ministry of Education and Science of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mitrović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrović, A., Janošević, D., Budimir, S. et al. Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis. Biol Plant 56, 357–361 (2012). https://doi.org/10.1007/s10535-012-0098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0098-y

Additional key words

Navigation