Skip to main content
Log in

Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Short-term responses of Sedum alfredii roots to Cd exposure was compared in Cd hyperaccumulator (HE) and nonhyperaccumulating ecotype (NHE). Cadmium exposure significantly inhibited root elongation and induced loss of plasma membrane integrity and lipid peroxidation of roots tips in the NHE, whereas these effects were much less pronounced in the HE plants. A strong accumulation of reactive oxygen species with increasing Cd concentration was noted in the NHE root tips, but not in HE. After Cd exposure, a dose-dependent decrease in oxidized glutathione and marked increase in reduced glutathione and non-protein thiols were observed in root tips of HE, but were not seen in the NHE plants. These results suggest that the HE tolerates high Cd in the environment through the differential adaptations against Cd-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

DHE:

dihydroethidium

DTNB:

5,5′-dithiobis-2-nitrobenzoic acid

GSH:

reduced glutathione

GSSG:

oxidized glutathione

MDA:

malondialdehyde

NPT:

non-protein thiols

ROS:

reactive oxygen species

TBARS:

thiobarbituric acid reactive substances

TCA:

trichloroacetic acid

TMP:

2,2,6,6-tetramethyl-4-(methylsulfonyloxy)-1-piperidinooxy

References

  • Bertin, G., Averbeck, D.: Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences. — Biochemistry 88: 1549–1559, 2006.

    Article  CAS  Google Scholar 

  • Bidwell, S.D., Crawford, S.A., Woodrow, I.E., Sommer-Knudsen, J., Marshall, A.T.: Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. — Plant Cell Environ. 27: 705–716, 2004.

    Article  CAS  Google Scholar 

  • Boominathan, R., Doran, P.M.: Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. — New Phytol. 156: 205–215, 2002.

    Article  CAS  Google Scholar 

  • Boominathan, R., Doran, P.M.: Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. — Biotechnol. Bioeng. 83: 158–167, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, S.: Molecular mechanisms of plant metal tolerance and homeostasis. — Planta 212: 475–486, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Das, P., Samantaray, S., Rout, G.R.: Studies on cadmium toxicity in plants: a review. — Environ. Pollut. 98: 29–36, 1997.

    Article  PubMed  CAS  Google Scholar 

  • De Vos, C.H.R., Vonk, M.J., Vooijs, R., Schat, H.: Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. — Plant Physiol. 98: 853–858, 1992.

    Article  PubMed  Google Scholar 

  • Dixit, V., Pandey, V., Shyam, R.: Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). — J. exp. Bot. 52: 1101–1109, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Dunand, C., Crevecoeur, M., Penel, C.: Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. — New Phytol. 174: 332–341, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., Davies, J.M., Dolan, L.: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. — Nature 422: 442–446, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, J.L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I.J., Salt, D.E.: Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. — Plant Cell 16: 2176–2191, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gechev, T.S., Hille, J.: Hydrogen peroxide as a signal controlling plant programmed cell death. — J. cell. Biol. 168: 17–20, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J.L.: Cellular mechanisms for heavy metal detoxification and tolerance. — J. exp. Bot. 53: 1–11, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Han, Y., Zhang, J., Chen, X.Y., Gao, Z.Z., Xuan, W., Xu, S., Ding, X., Shen, W.B.: Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. — New Phytol. 177: 155–166, 2008.

    PubMed  CAS  Google Scholar 

  • Huang, H.G., Li, T.X., Tian, S.K., Gupta, D.K., Zhang, X.Z., Yang, X.E.: Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H. — Bioresour. Technol. 99: 6088–6096, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Jin, X.F., Yang, X., Mahmood, Q., Islam, E., Liu, D., Li, H.: Response of antioxidant enzymes, ascorbate and glutathione metabolism towards cadmium in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii H. — Environ. Toxicol. 23: 517–529, 2008a.

    Article  PubMed  CAS  Google Scholar 

  • Jin, X.F., Yang, X.O., Islam, E., Liu, D., Mahmood, Q.: Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. — J. Hazard. Materials 156: 387–397, 2008b.

    Article  CAS  Google Scholar 

  • Kramer, U., Cotter Howells, J.D., Charnock, J.M., Baker, A.J.M., Smith, J.A.C.: Free histidine as a metal chelator in plants that accumulate nickel. — Nature 379: 635–638, 1996.

    Article  CAS  Google Scholar 

  • Li, W.C., Ye, Z.H., Wong, M.H.: Effects of bacteria an enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. — J. exp. Bot. 58: 4173–4182, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Liszkay, A., Van der Zalm, E., Schopfer, P.: Production of reactive oxygen intermediates (O2 ·−, H2O2, and OH·) by maize roots and their role in wall loosening and elongation growth. — Plant Physiol. 136: 3114–3123, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lu, L.L., Tian, S.K., Yang, X.E., Wang, X.C., Brown, P., Li, T.Q., He, Z.L.: Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. — J. exp. Bot. 59: 3203–3213, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Metwally, A., Safronova, V.I., Belimov, A.A., Dietz, K.J.: Genotypic variation of the response to cadmium toxicity in Pisum sativum. — J. exp. Bot. 56: 167–178, 2005.

    PubMed  CAS  Google Scholar 

  • Nedelkoska, T.V., Doran, P.M.: Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. — Biotechnol. Bioeng. 67: 607–615, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pietrini, F., Iannelli, M.A., Pasqualini, S., Massacci, A.: Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. — Plant Physiol. 133: 829–837, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gomez, M., Del Rio, L.A., Sandalio, L.M.: Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. — Plant Cell Environ. 29: 1532–1544, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Salt, D.E., Prince, R.C., Baker, A.J.M., Raskin, I., Pickering, I.J.: Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. — Environ. Sci. Technol. 33: 713–717, 1999.

    Article  CAS  Google Scholar 

  • Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., Del Rio, L.A.: Cadmium-induced changes in the growth and oxidative metabolism of pea plants. — J. exp. Bot. 52: 2115–2126, 2001.

    PubMed  CAS  Google Scholar 

  • Schutzendubel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R., Godbold, D.L., Polle, A.: Cadmiuminduced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. — Plant Physiol. 127: 887–898, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Q., Ye, Z.H., Wang, X.R., Wong, M.H.: Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J. Plant Physiol. 164: 1489–1498, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Tian, S.K., Lu, L.L., Yang, X.E., Labavitch, J.M., Huang, Y.Y., Brown, P.: Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. — New Phytol. 182: 116–126, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Ueno, D., Ma, J.F., Iwashita, T., Zhao, F.J., McGrath, S.P.: Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using Cd-113-NMR. — Planta 221: 928–936, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik, M., Tukiendorf, A.: Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. — Biol. Plant. 55: 125–132, 2011.

    Article  CAS  Google Scholar 

  • Xiong, Y.H., Yang, X.E., Ye, Z.Q., He, Z.L.: Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. — J. Environ. Sci. 39: 2925–2940, 2004.

    CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S., Matsumoto, H.: Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. — Plant Physiol. 128: 63–72, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Matsumoto, H.: Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. — Plant Physiol. 125: 199–208, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.E., Long, X.X., Ye, H.B., He, Z.L., Calvert, D.V., Stoffella, P.J.: Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). — Plant Soil 259: 181–189, 2004.

    Article  CAS  Google Scholar 

  • Zhu, Y.L., Pilon-Smits, E.A.H., Jouanin, L., Terry, N.: Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. — Plant Physiol. 119: 73–79, 1999a.

    Article  CAS  Google Scholar 

  • Zhu, Y.L., Pilon-Smits, E.A.H., Tarun, A.S., Weber, S.U., Jouanin, L., Terry, N.: Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gammaglutamylcysteine synthetase. — Plant Physiol. 121: 1169–1177, 1999b.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Project from the National Natural Science Foundation of China (31000935), Key Project from Ministry of Environmental Protection of China (2011467057), “863” Target Goal Project from Ministry of Science of China (2009AA06Z316), and Project from Department of Education of Zhejiang Province (Y200909812). We thank Mr. Jianguo Zhao, Le Zhang and Huijuan Yang for their great assistance in our experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. L. Lu or X. E. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, S.K., Lu, L.L., Yang, X.E. et al. Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii . Biol Plant 56, 344–350 (2012). https://doi.org/10.1007/s10535-012-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0096-0

Additional key words

Navigation