Skip to main content
Log in

Exogenous H2O2 increased catalase and peroxidase activities and proline content in Nitraria tangutorum callus

  • Original Papers
  • Published:
Biologia Plantarum


Antioxidative responses and proline accumulation induced by exogenous H2O2 were investigated in the callus from halophyte Nitraria tangutorum Bobr. H2O2-treated callus exhibited higher H2O2 content than untreated callus. The activities of catalase (CAT) and peroxidase (POD) significantly increased in the callus treated with H2O2, while ascorbate peroxidase (APX) activity decreased. In addition, significantly enhanced proline content was observed in the callus treated by H2O2, which could be alleviated by H2O2 scavenger dimethylthiourea and calcium (Ca) chelator ethylene glycol bis-(β-aminoethyl ether)-N,N,N′,N′-tetra-acetic acid (EGTA). Moreover, γ-glutamyl kinase (GK) activity increased in H2O2-treated callus, but proline dehydrogenase (PDH) activity decreased significantly, and the reduction was partly abolished by EGTA or Ca channel blocker verapamil. Assays using a scanning electron microscope showed significantly enhanced Ca content in H2O2-treated callus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others



ascorbate peroxidase








ethylenediaminetetraacetic acid


ethylene glycol bis-(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid


γ-glutamyl kinase


ornithine aminotransferase


proline dehydrogenase






  • Aebi, H.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 673–677. Academic Press, New York 1974.

    Google Scholar 

  • Antunes, F., Cadenas, E.: Estimation of H2O2 gradients across biomembranes. — FEBS Lett. 475: 121–126, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Banu, M.N., Hoque, M.A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y., Murata, Y.: Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. — J. Plant Physiol. 166: 146–156, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Coelho, S.M., Taylor, A.R., Ryan, K.P., Sousa-Pinto, I., Brown, M.T., Brownlee, C.L.: Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. — Plant Cell 14: 2369–2381, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Delauney, A.J., Verma, D.P.S.: Proline biosynthesis and osmoregulation in plants. — Plant J. 4: 215–223, 1993.

    Article  CAS  Google Scholar 

  • Demidchik, V., Shabala, S.N., Davies, J.M.: Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. — Plant J. 49: 377–386, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Forman, H.J.: Use and abuse of exogenous H2O2 in studies of signal transduction. — Free Radical Biol. Med. 42: 926–932, 2007.

    Article  CAS  Google Scholar 

  • Gobinathan, P., Murali, P.V., Panneerselvam, R.: Interactive effects of calcium chloride on salinity-induced proline metabolism in Pennisetum typoidies. — Adv. Biol. Res. 3: 168–173, 2009.

    CAS  Google Scholar 

  • Hare, P., Cress, W., Van Staden, J.: Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. — J. exp. Bot. 50: 413–434, 1999.

    Article  CAS  Google Scholar 

  • Kim, H.R., Rho, H.W., Park, J.W., Park, B.H.: Assay of ornithine aminotransferase with ninhydrin. — Anal. Biochem. 223: 205–207, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Knight, H., Trewavas, A.J., Knight, M.R.: Calcium signalling in Arabidopsis thaliana responding to drought and salinity. — Plant J. 12: 1067–1078, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Krell, A., Funck, D., Plettner, I., John, U., Dieckmann, G.: Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). — J. Phycol. 43: 753–762, 2007.

    Article  CAS  Google Scholar 

  • Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., Pugin, A.: Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. — Plant Cell 14: 2627–2641, 2002.

  • Lee, T.M., Liu, C.H.: Regulation of NaCl-induced proline accumulation by calmodulin via modification of proline dehydrogenase activity in Ulva fasciata (Chlorophyta). — Aust. J. Plant Physiol. 26: 595–600, 1999.

    Article  CAS  Google Scholar 

  • Lin, J.N., Kao, C.H.: Effect of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. — Bot. Bull. Acad. sin. 39: 161–165, 1998.

    CAS  Google Scholar 

  • Madan, S., Nainawatee, H.S., Jain, R.K., Chowdhury, J.: Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. — Ann. Bot. 76: 51–57, 1995.

    Article  CAS  Google Scholar 

  • Mallik, S., Nayak, M., Sahu, B.B., Panigrahi, A.K., Shaw, B.P.: Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. — Biol. Plant. 55: 1191–195, 2011.

    Article  Google Scholar 

  • Misra, N., Gupta, A.K.: Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. — Plant Sci. 169: 331–339, 2005.

    Article  CAS  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Ozden, M., Demirel, U., Kahraman, A.: Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. — Scientia Hort. 119: 163–168, 2009.

    Article  CAS  Google Scholar 

  • Pei, Z.F., Ming, D.F., Liu, D., Wan, D., Geng, X.X., Gong, H.J., Zhou, W.J.: Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. — J. Plant Growth Regul. 29: 106–115, 2010.

    Article  CAS  Google Scholar 

  • Peng, L.T., Yang, S.Z., Li, Q., Jiang, Y.M., Joyce, D.C.: Hydrogen peroxide treatments inhibit the browning of freshcut Chinese water chestnut. — Post. Biol. Technol. 47: 260–266, 2008.

    Article  CAS  Google Scholar 

  • Rao, M.V., Paliyath, G., Ormrod, D.P.: Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. — Plant Physiol. 110: 125–136, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Rena, A.B., Splittstoesser, W.E.: Proline dehydrogenase and pyrroline-5-carboxylate reductase from pumpkin cotyledons. — Phytochemistry 14: 657–661, 1975.

    Google Scholar 

  • Sergiev, I., Alexieva, V., Karanov, E.: Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. — Compt. Rend. Acad. Bulg. Sci. 51: 121–124, 1997.

    Google Scholar 

  • Shalata, A., Tal, M.: The effects of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. — Physiol. Plant. 104: 169–174, 1998.

    Article  CAS  Google Scholar 

  • Smith, C.J., Deutch, A.H., Rushlow, K.E.: Purification and characteristics of a γ-glutamyl kinase involved in Escherichia coli proline biosynthesis. — J. Bacteriol. 157: 545–551, 1984.

    PubMed  CAS  Google Scholar 

  • Sousa-Lopes, A., Antunesa, F., Cyrnea, L., Marinho, H.S.: Decreased cellular permeability to H2O2 protects Saccharomyces cerevisiae cells in stationary phase against oxidative stress. — FEBS Lett. 578: 152–156, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Szekely, G.Y.: The role of proline in Arabidopsis thaliana osmotic stress response. — Acta biol. Szeged. 48: 81, 2004.

    Google Scholar 

  • Thippeswamy, M., Chandraobulreddy, P., Sinilal, B., Shiva Kumar, M., Sudhakar, C.: Proline accumulation and the expression of Δ1-pyrroline-5-carboxylate synthetase in two safflower cultivars. — Biol. Plant. 54: 386–390, 2010.

    Article  CAS  Google Scholar 

  • Tsai, Y.C., Hong, C.Y., Liu, L.F., Kao, C.H.: Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. — J. Plant Physiol. 162: 291–299, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Vázquez, M.D., Poschenrieder, C., Corrales, I., Barceló, J.: Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. — Plant Physiol. 119: 435–444, 1999.

    Article  PubMed  Google Scholar 

  • Walker, D. J., Romero P., Correal E.: Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. — Biol. Plant. 54: 293–298, 2010.

    Article  Google Scholar 

  • Yahubyan, G., Gozmanova, M., Denev, I., Toneva, V., Minkov, I.: Prompt response of superoxide dismutase and peroxidase to dehydration and rehydration of the resurrection plant Haberlea rhodopensis. — Plant Growth Regul. 57: 49–56, 2009.

    Article  CAS  Google Scholar 

  • Yang, S.M., Furukawa, L.K.: Anatomical adaptations of three species of Chinese xerophytes (Zygophyllaceae). — J. Forest. Res. 17: 247–251, 2006.

    Article  Google Scholar 

  • Yang, Y.L., Wei, X.L., Shi, R.X., Fan, Q., An, L.Z.: Salinityinduced physiological modification in the callus from halophyte Nitraria tangutorum Bobr.. — J. Plant Growth Regul. 29: 477–486, 2010.

    Article  Google Scholar 

  • Yu, C.W., Murphy, T.M., Lin, C.H.: Hydrogen peroxideinduced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. — Funct. Plant Biol. 30: 955–963, 2003.

    Article  CAS  Google Scholar 

  • Xue, Y., Peng, R., Xiong, A., Li, X., Zha, D., Yao, Q.: Overexpression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. — Biol. Plant. 54: 105–111, 2010.

    Article  CAS  Google Scholar 

  • Zhang, X., Dong, F.C., Cao, J.F., Song, C.P.: Hydrogen peroxide induced changes in intracellular pH of guard cells precede stomatal closure. — Cell Res. 11: 37–43, 2001.

    Article  PubMed  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 30960064) and the Gansu Program Project for Science and Technology (1010RJZA027).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Y. L. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y.L., Zhang, Y.Y., Lu, J. et al. Exogenous H2O2 increased catalase and peroxidase activities and proline content in Nitraria tangutorum callus. Biol Plant 56, 330–336 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Additional key words