Advertisement

Biologia Plantarum

, Volume 56, Issue 2, pp 330–336 | Cite as

Exogenous H2O2 increased catalase and peroxidase activities and proline content in Nitraria tangutorum callus

  • Y. L. YangEmail author
  • Y. Y. Zhang
  • J. Lu
  • H. Zhang
  • Y. Liu
  • Y. Jiang
  • R. X. Shi
Original Papers

Abstract

Antioxidative responses and proline accumulation induced by exogenous H2O2 were investigated in the callus from halophyte Nitraria tangutorum Bobr. H2O2-treated callus exhibited higher H2O2 content than untreated callus. The activities of catalase (CAT) and peroxidase (POD) significantly increased in the callus treated with H2O2, while ascorbate peroxidase (APX) activity decreased. In addition, significantly enhanced proline content was observed in the callus treated by H2O2, which could be alleviated by H2O2 scavenger dimethylthiourea and calcium (Ca) chelator ethylene glycol bis-(β-aminoethyl ether)-N,N,N′,N′-tetra-acetic acid (EGTA). Moreover, γ-glutamyl kinase (GK) activity increased in H2O2-treated callus, but proline dehydrogenase (PDH) activity decreased significantly, and the reduction was partly abolished by EGTA or Ca channel blocker verapamil. Assays using a scanning electron microscope showed significantly enhanced Ca content in H2O2-treated callus.

Additional key words

antioxidative enzymes calcium γ-glutamyl kinase proline dehydrogenase 

Abbreviations

APX

ascorbate peroxidase

ASA

ascorbate

CAT

catalase

DMTU

dimethylthiourea

EDTA

ethylenediaminetetraacetic acid

EGTA

ethylene glycol bis-(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

GK

γ-glutamyl kinase

OAT

ornithine aminotransferase

PDH

proline dehydrogenase

POD

peroxidase

PVP

polyvinylpyrrolidone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 30960064) and the Gansu Program Project for Science and Technology (1010RJZA027).

References

  1. Aebi, H.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 673–677. Academic Press, New York 1974.Google Scholar
  2. Antunes, F., Cadenas, E.: Estimation of H2O2 gradients across biomembranes. — FEBS Lett. 475: 121–126, 2000.PubMedCrossRefGoogle Scholar
  3. Banu, M.N., Hoque, M.A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y., Murata, Y.: Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. — J. Plant Physiol. 166: 146–156, 2009.PubMedCrossRefGoogle Scholar
  4. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  6. Coelho, S.M., Taylor, A.R., Ryan, K.P., Sousa-Pinto, I., Brown, M.T., Brownlee, C.L.: Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. — Plant Cell 14: 2369–2381, 2002.PubMedCrossRefGoogle Scholar
  7. Delauney, A.J., Verma, D.P.S.: Proline biosynthesis and osmoregulation in plants. — Plant J. 4: 215–223, 1993.CrossRefGoogle Scholar
  8. Demidchik, V., Shabala, S.N., Davies, J.M.: Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. — Plant J. 49: 377–386, 2007.PubMedCrossRefGoogle Scholar
  9. Forman, H.J.: Use and abuse of exogenous H2O2 in studies of signal transduction. — Free Radical Biol. Med. 42: 926–932, 2007.CrossRefGoogle Scholar
  10. Gobinathan, P., Murali, P.V., Panneerselvam, R.: Interactive effects of calcium chloride on salinity-induced proline metabolism in Pennisetum typoidies. — Adv. Biol. Res. 3: 168–173, 2009.Google Scholar
  11. Hare, P., Cress, W., Van Staden, J.: Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. — J. exp. Bot. 50: 413–434, 1999.CrossRefGoogle Scholar
  12. Kim, H.R., Rho, H.W., Park, J.W., Park, B.H.: Assay of ornithine aminotransferase with ninhydrin. — Anal. Biochem. 223: 205–207, 1994.PubMedCrossRefGoogle Scholar
  13. Knight, H., Trewavas, A.J., Knight, M.R.: Calcium signalling in Arabidopsis thaliana responding to drought and salinity. — Plant J. 12: 1067–1078, 1997.PubMedCrossRefGoogle Scholar
  14. Krell, A., Funck, D., Plettner, I., John, U., Dieckmann, G.: Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). — J. Phycol. 43: 753–762, 2007.CrossRefGoogle Scholar
  15. Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., Pugin, A.: Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. — Plant Cell 14: 2627–2641, 2002.Google Scholar
  16. Lee, T.M., Liu, C.H.: Regulation of NaCl-induced proline accumulation by calmodulin via modification of proline dehydrogenase activity in Ulva fasciata (Chlorophyta). — Aust. J. Plant Physiol. 26: 595–600, 1999.CrossRefGoogle Scholar
  17. Lin, J.N., Kao, C.H.: Effect of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. — Bot. Bull. Acad. sin. 39: 161–165, 1998.Google Scholar
  18. Madan, S., Nainawatee, H.S., Jain, R.K., Chowdhury, J.: Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. — Ann. Bot. 76: 51–57, 1995.CrossRefGoogle Scholar
  19. Mallik, S., Nayak, M., Sahu, B.B., Panigrahi, A.K., Shaw, B.P.: Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. — Biol. Plant. 55: 1191–195, 2011.CrossRefGoogle Scholar
  20. Misra, N., Gupta, A.K.: Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. — Plant Sci. 169: 331–339, 2005.CrossRefGoogle Scholar
  21. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.PubMedCrossRefGoogle Scholar
  22. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  23. Ozden, M., Demirel, U., Kahraman, A.: Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. — Scientia Hort. 119: 163–168, 2009.CrossRefGoogle Scholar
  24. Pei, Z.F., Ming, D.F., Liu, D., Wan, D., Geng, X.X., Gong, H.J., Zhou, W.J.: Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. — J. Plant Growth Regul. 29: 106–115, 2010.CrossRefGoogle Scholar
  25. Peng, L.T., Yang, S.Z., Li, Q., Jiang, Y.M., Joyce, D.C.: Hydrogen peroxide treatments inhibit the browning of freshcut Chinese water chestnut. — Post. Biol. Technol. 47: 260–266, 2008.CrossRefGoogle Scholar
  26. Rao, M.V., Paliyath, G., Ormrod, D.P.: Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. — Plant Physiol. 110: 125–136, 1996.PubMedCrossRefGoogle Scholar
  27. Rena, A.B., Splittstoesser, W.E.: Proline dehydrogenase and pyrroline-5-carboxylate reductase from pumpkin cotyledons. — Phytochemistry 14: 657–661, 1975.Google Scholar
  28. Sergiev, I., Alexieva, V., Karanov, E.: Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. — Compt. Rend. Acad. Bulg. Sci. 51: 121–124, 1997.Google Scholar
  29. Shalata, A., Tal, M.: The effects of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. — Physiol. Plant. 104: 169–174, 1998.CrossRefGoogle Scholar
  30. Smith, C.J., Deutch, A.H., Rushlow, K.E.: Purification and characteristics of a γ-glutamyl kinase involved in Escherichia coli proline biosynthesis. — J. Bacteriol. 157: 545–551, 1984.PubMedGoogle Scholar
  31. Sousa-Lopes, A., Antunesa, F., Cyrnea, L., Marinho, H.S.: Decreased cellular permeability to H2O2 protects Saccharomyces cerevisiae cells in stationary phase against oxidative stress. — FEBS Lett. 578: 152–156, 2004.PubMedCrossRefGoogle Scholar
  32. Szekely, G.Y.: The role of proline in Arabidopsis thaliana osmotic stress response. — Acta biol. Szeged. 48: 81, 2004.Google Scholar
  33. Thippeswamy, M., Chandraobulreddy, P., Sinilal, B., Shiva Kumar, M., Sudhakar, C.: Proline accumulation and the expression of Δ1-pyrroline-5-carboxylate synthetase in two safflower cultivars. — Biol. Plant. 54: 386–390, 2010.CrossRefGoogle Scholar
  34. Tsai, Y.C., Hong, C.Y., Liu, L.F., Kao, C.H.: Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. — J. Plant Physiol. 162: 291–299, 2005.PubMedCrossRefGoogle Scholar
  35. Vázquez, M.D., Poschenrieder, C., Corrales, I., Barceló, J.: Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. — Plant Physiol. 119: 435–444, 1999.PubMedCrossRefGoogle Scholar
  36. Walker, D. J., Romero P., Correal E.: Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. — Biol. Plant. 54: 293–298, 2010.CrossRefGoogle Scholar
  37. Yahubyan, G., Gozmanova, M., Denev, I., Toneva, V., Minkov, I.: Prompt response of superoxide dismutase and peroxidase to dehydration and rehydration of the resurrection plant Haberlea rhodopensis. — Plant Growth Regul. 57: 49–56, 2009.CrossRefGoogle Scholar
  38. Yang, S.M., Furukawa, L.K.: Anatomical adaptations of three species of Chinese xerophytes (Zygophyllaceae). — J. Forest. Res. 17: 247–251, 2006.CrossRefGoogle Scholar
  39. Yang, Y.L., Wei, X.L., Shi, R.X., Fan, Q., An, L.Z.: Salinityinduced physiological modification in the callus from halophyte Nitraria tangutorum Bobr.. — J. Plant Growth Regul. 29: 477–486, 2010.CrossRefGoogle Scholar
  40. Yu, C.W., Murphy, T.M., Lin, C.H.: Hydrogen peroxideinduced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. — Funct. Plant Biol. 30: 955–963, 2003.CrossRefGoogle Scholar
  41. Xue, Y., Peng, R., Xiong, A., Li, X., Zha, D., Yao, Q.: Overexpression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. — Biol. Plant. 54: 105–111, 2010.CrossRefGoogle Scholar
  42. Zhang, X., Dong, F.C., Cao, J.F., Song, C.P.: Hydrogen peroxide induced changes in intracellular pH of guard cells precede stomatal closure. — Cell Res. 11: 37–43, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Y. L. Yang
    • 1
    Email author
  • Y. Y. Zhang
    • 1
  • J. Lu
    • 1
  • H. Zhang
    • 1
  • Y. Liu
    • 1
  • Y. Jiang
    • 1
  • R. X. Shi
    • 1
  1. 1.School of Life ScienceNorthwest Normal UniversityLanzhouP.R. China

Personalised recommendations