Skip to main content
Log in

Nitric oxide is involved in the regulation of ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

This study investigated the regulation of ascorbate and glutathione metabolism by nitric oxide in Agropyron cristatum leaves under water stress. The activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), L-galactono-1,4-lactone dehydrogenase (GalLDH) and γ-glutamylcysteine synthetase (γ-ECS), and the contents of NO, reduced ascorbic acid (AsA), reduced glutathione (GSH), total ascorbate and total glutathione increased under water stress. These increases were suppressed by pretreatments with NO synthesis inhibitors N G-nitro-L-arginine methyl ester (L-NAME) and 4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). However, application of L-NAME and cPTIO to plants sufficiently supplied with water did not affect the activities of above mentioned enzymes and the contents of NO and above mentioned antioxidants. Pretreatments with L-NAME and cPTIO increased the malondialdehyde (MDA) content and electrolyte leakage of plants under water stress. Our results suggested that water stress-induced NO is a signal that leads to the upregulation of ascorbate and glutathione metabolism and has important role for acquisition of water stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APX:

ascorbate peroxidase

AsA:

reduced ascorbic acid

DHAR:

dehydroascorbate reductase

γ-ECS:

γ-glutamylcysteine synthetase

GalLDH:

L-galactono-1,4-lactone dehydrogenase

GR:

glutathione reductase

GSH:

reduced glutathione

MDA:

malondialdehyde

MDHAR:

monodehydroascorbate reductase

L-NAME-N G :

nitro-L-arginine methyl ester

cPTIO:

4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

References

  • Apel, K., Hirt, H.: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J.: Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. — Proc. Nat. Acad. Sci. USA 83: 3811–3815, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Dringen, R.: Glutathione metabolism and oxidative stress in neurodegeneration. — Eur. J. Biochem. 267: 4903, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Grace, S.C., Logan, B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. — Plant Physiol. 112: 1631–1640, 1996.

    PubMed  CAS  Google Scholar 

  • Griffith, O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. — Anal. Biochem. 106: 207–212, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Guo, F.Q., Crawford, N.M.: Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. — Plant Cell 17: 3436–3450, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hodges, D.M., Andrews, C.J., Johnson, D.A., Hamilton, R.I.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. — Plant Physiol. 98: 685–692, 1996.

    Article  CAS  Google Scholar 

  • Hodges, M.D., DeLong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. — Planta 207: 604–611, 1999.

    Article  CAS  Google Scholar 

  • Hu, W.H., Xiao, Y.A., Zeng, J.J., Hu, X.H.: Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. — Biol. Plant. 54: 761–765, 2010.

    Article  CAS  Google Scholar 

  • Hu, X., Neill, S.J., Tang, Z., Cai, W.: Nitric oxide mediates gravitropic bending in soybean roots. — Plant Physiol. 137: 663–670, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, M.Y., Zhang, J.H.: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. — J. exp. Bot. 53: 2401–2410, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lan, Y.P., Han, Z.H., Xu, X.F.: Accumulation of jasmonic acid in apple seedlings under water stress. — Acta hort. sin. 31: 16–20, 2004.

    Google Scholar 

  • Li, L., Van Staden, J., Jäger, A.K.: Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. — Plant Growth Regul. 25: 81–87, 1998.

    Article  CAS  Google Scholar 

  • Miyake, C., Asada, K.: Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. — Plant Cell Physiol. 33: 541–553, 1992.

    CAS  Google Scholar 

  • Mýtinová, Z., Motyka, V., Haisel, D., Gaudinová, A., Lubovská, Z., Wilhelmová, N.: Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. — Biol. Plant. 54: 461–470, 2010.

    Article  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J.: Nitric oxide, stomatal closure, and abiotic stress. — J. exp. Bot. 59: 165–176, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. 49: 249–279, 1998.

    Article  CAS  Google Scholar 

  • Pagnussat, G.C., Lanteri, M.L., Lombardo, M.C., Lamattina, L.: Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. — Plant Physiol. 135: 279–286, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ruan, H.H., Shen, W.B., Liu, K.L., Xu, L.L.: Effects of exogenous NO donor on glutathione-dependent antioxidative system in wheat seedling leaf under salt stress. — Acta agron. sin. 31: 1144–1149, 2005.

    CAS  Google Scholar 

  • Rüegsegger, A., Brunold, C.: Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. — Plant Physiol. 99: 428–433, 1992.

    Article  PubMed  Google Scholar 

  • Shan, C., Liang, Z.: Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. — Plant Sci. 178: 130–139, 2010.

    Article  CAS  Google Scholar 

  • Song, L.L., Ding, W., Shen, J., Zhang, Z.G., Bi, Y.R., Zhang, L.X.: Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. — Plant Sci. 175: 826–832, 2008.

    Article  CAS  Google Scholar 

  • Vuletić, M., Šukalović, V.H., Marković, K., Maksimović, J.D.: Antioxidative system in maize roots as affected by osmotic stress and different nitrogen sources. — Biol. Plant. 54: 530–534, 2010.

    Article  Google Scholar 

  • Wang, Y., Lin, J.S., Wang, G.X.: Role of calcium in nitric oxide-induced programmed cell death in tobacco protoplasts. — Biol. Plant. 54: 471–476, 2010.

    Article  CAS  Google Scholar 

  • Wheeler, G.L., Jones, M.A., Smirnoff, N.: The biosynthetic pathway of vitamin C in higher plants. — Nature 393: 365–369, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.C., Chen, J.Q., Liang, J., Yang, W.B., Wu, J.J., Chen, L.Q., Liu, M.Q., Chen, L.Q.: Effects of exogenous NO on ascorbate-glutathione cycle in loquat leaves under low temperature stress. — Chin. J. appl. Ecol. 20: 1395–1400, 2009.

    CAS  Google Scholar 

  • Zeier, J., Delledonne, M., Mishina, T., Severi, E., Sonoda, M., Lamb, C.: Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. — Plant Physiol. 136: 2875–2886, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X., Tan, M.: Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. — New Phytol. 175: 36–50, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, L.Q., Zhang, F., Guo, J.K., Yang, Y.L., Li, B.B., Zhang, L.X.: Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. — Plant Physiol. 134: 849–857, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zottini, M., Formentin, E., Scattolin, M., Carimi, F., Lo Schiavo, F., Terzi, M.: Nitric oxide affects plant mitochondrial functionality in vivo. — FEBS Lett. 515: 75–78, 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciated financial support by the Knowledge Innovation Program of the Chinese Academy of Science (KZCX2-YW-443), National Scientific and Technological Support Program of the Ministry of Science and Technology of China (2008BAD98B08) and Personnel Foundation of Northwest A & F University. The first two authors contributed equally to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, C., He, F., Xu, G. et al. Nitric oxide is involved in the regulation of ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Biol Plant 56, 187–191 (2012). https://doi.org/10.1007/s10535-012-0040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0040-3

Additional key words

Navigation