Skip to main content
Log in

Aluminum-induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidant capacity in wheat root tips

  • Published:
Biologia Plantarum


The present study investigated the effects of aluminum on lipid peroxidation, accumulation of reactive oxygen species and antioxidative defense systems in root tips of wheat (Triticum aestivum L.) seedlings. Exposure to 30 μM Al increased contents of malondialdehyde, H2O2, suproxide radical and Evans blue uptake in both genotypes, with increases being greater in Al-sensitive genotype Yangmai-5 than in Al-tolerant genotype Jian-864. In addition, Al treatment increased the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR) and glutathione peroxidase (GPX), as well as the contents of ascorbate (AsA) and glutathione (GSH) in both genotypes. The increased activities SOD and POD were greater in Yangmai-5 than in Jian-864, whereas the opposite was true for the activities of CAT, APX, MDHAR, GR and GPX and the contents of AsA and GSH. Consequently, the antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity and ferric reducing/antioxidant power (FRAP) was greater in Jian-864 than in Yangmai-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others



ascorbate peroxidase






dehydroascorbate reductase




ferric reducing/antioxidant power


glutathione peroxidase


glutathione reductase


reduced glutathione


oxidized glutathione


inhibition of root elongation




monodehydroascorbate reductase


programmed cell death


plasma membrane




reactive oxygen species


relative root elongation


superoxide dismutase


thiobarbituric acid


trichloroacetic acid


  • Abe, N., Murata, T., Hirota, A.: 1-diphenyl-2-picryhydrazylradical scavengers, bisorbicillin and demethyltrichodimerol, from a fungus. — Biosci. Biotech. Biochem. 62: 661–662, 1998.

    Article  CAS  Google Scholar 

  • Aebi, H.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. 3. Pp. 273–277. Verlag Chemie, Weinheim — New York 1983.

    Google Scholar 

  • Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant. Biol. 55: 373–399, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Baker, C.J., Mock, N.M.: An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. — Plant Cell Tissue Organ Cult. 39: 7–12, 1994.

    Article  Google Scholar 

  • Basu, U., Good, G.A., Taylor, G.J.: Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum. — Plant Cell Environ. 24: 1269–1278, 2001.

    Article  CAS  Google Scholar 

  • Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. — Anal Biochem. 239: 70–76, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Boscolo, P.R.S., Menossib, M., Jorgea, R.A.: Aluminuminduced oxidative stress in maize. — Phytochemisty 62: 181–189, 2003.

    Article  CAS  Google Scholar 

  • Cakmak, I., Horst, W.J.: Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). — Physiol. Plant. 83: 463–468, 1991.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. — Planta 133: 21–25, 1976.

    Article  Google Scholar 

  • Foyer, C.H., Noctor, G.: Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. — Plant Cell Environ. 28: 1056–1071, 2005.

    Article  CAS  Google Scholar 

  • Frahry, G., Schopfer, P.: NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. — Planta 212: 175–183, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Giannakoulas, A., Moustakas, M., Syros, T., Yupsanis, T.: Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in a Al sensitive line. — Environ. exp. Bot. 67: 487–494, 2010.

    Article  Google Scholar 

  • Giannopolities, C.N., Ries, S.K.: Superoxide dismutases. I. occurrence in higher plants. — Plant Physiol. 59: 309–414, 1977.

    Article  Google Scholar 

  • Goodwin, S.B., Sutter, T.R.: Microarray analysis of Arabidopsis genome response to aluminum stress. — Biol. Plant. 53: 85–99, 2009.

    Article  CAS  Google Scholar 

  • Hodges, D., Andrews, C., Johnson, D., Hamilton, R.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize 23 lines. — Physiol. Plant. 98: 685–692, 1996.

    Article  CAS  Google Scholar 

  • Hossain, M.A., Asada, K.: Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate. — Plant Cell Physiol. 25: 1285–1295, 1984.

    CAS  Google Scholar 

  • Hossain, M.A., Nakano, Y., Asada, K.: Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. — Plant Cell Physiol. 25: 385–395, 1984.

    CAS  Google Scholar 

  • Jana, S., Chaudhuri, A.: Glycolate metabolism of three submerged aquatic angiosperms during aging. — Aquat. Bot. 12: 345–354, 1982.

    Article  CAS  Google Scholar 

  • Jones, D.L., Blancaflor, E.B., Kochian, L.V., Gilroy, S.: Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. — Plant Cell Environ. 29: 1309–1318, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.M., Saltveit, M.E.: Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high- and low-vigour cucumber seedling radicles. — Plant Cell Environ. 25: 1233–1238, 2002.

    Article  CAS  Google Scholar 

  • Kochian, L.V.: Cellular mechanisms of aluminum toxicity and resistance in plants. — Annu. Rev. Plant Physiol. Plant. mol. Biol. 46: 237–260, 1995.

    Article  CAS  Google Scholar 

  • Kuo, M.C., Kao, C.H.: Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. — Biol. Plant. 46: 149–152, 2003.

    Article  CAS  Google Scholar 

  • Ma, J.F.: Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. — Int. Rev. Cytol. 264: 225–252, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H.: Cell biology of aluminum toxicity and tolerance in higher plants. — Int. Rev. Cytol. 200: 1–46, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F.: Reactive oxygen gene network of plants. — Trends Plant Sci. 9: 490–498, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Navrot, N., Rouhier, N., Gelhaye, E., Jacquot, J.P.: Reactive oxygen species generation and antioxidant systems in plant mitochondria. — Physiol. Plant. 129: 185–195, 2007.

    Article  CAS  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant. Physiol. Plant. mol. Biol. 49: 249–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Passardi, F., Penel, C., Dunand, C.: Performing the paradoxical: how plant peroxidases modify the cell wall. — Trends Plant Sci. 9: 534–541, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C.: Aluminium induces oxidative stress genes in Arabidopsis thaliana. — Plant Physiol. 116: 409–418, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, P., Dubey, R.S.: Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. — Plant Cell Rep. 26: 2027–2038, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Šimonovičová, M., Huttová, J., Mistrík, I., Široká, B., Tamás, L.: Root growth inhibition by aluminum in probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. — Protoplasma 224: 91–98, 2004.

    PubMed  Google Scholar 

  • Tahara, K., Yamanoshita, T., Norisada, M., Hasegawa, I., Kashima, H., Sasaki, S., Kojima, K.: Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. — Plant Soil 307: 167–178, 2008.

    Article  CAS  Google Scholar 

  • Tamás, L., Huttová, J., Mistrík, I.: Inhibition of Al-induced root elongation and enhancement of Al-induced peroxidase in Al-sensitive and Al-resistant barley cultivars are positively correlated. — Plant Soil 250: 193–200, 2003.

    Article  Google Scholar 

  • Yadav, S.K., Mohanpuria, P.: Responses of Camellia sinensis cultivars to Cu and Al stress. — Biol. Plant. 53: 737–740, 2009.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S., Matsumoto, H.: Oxidative stress triggered by aluminum in plant roots. — Plant Soil 255: 239–243, 2003.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Matsumoto, H.: Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. — Plant Physiol. 125: 199–208, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhen, Y., Miao, L., Su, J., Liu, S.H., Yin, Y.L., Wang, S.S., Pang, Y.J., Shen, H.G., Tian, D., Qi, J.L., Yang, Y.H.: Differential responses of anti-oxidative enzymes to aluminum stress in tolerant and sensitive soybean genotypes. — J. Plant. Nutr. 32: 1255–1270, 2009.

    Article  CAS  Google Scholar 

  • Zheng, S.J., Yang, J.L.: Target sites of aluminum phytotoxicity. — Biol. Plant. 49: 321–331, 2005.

    Article  CAS  Google Scholar 

  • Zheng, X., Huystee, R.B.: Peroxidase-regulated elongation of segments from peanuts hypocotyls. — Plant Sci. 81: 47–56, 1992.

    Article  CAS  Google Scholar 

Download references


This research was financially supported by the National Basic Research Program of China (the 973 Program, No. 2007CB109305), National Natural Science Foundation of China (grant Nos. 30771292, 30900920, 30270784), the Foundation for the University Ph.D.-Granting Discipline of the Ministry of Education (grant No. 20060335014) and IPNI. Great thanks are given to Prof. Caixian Tang of La Trobe University, Australia, for his critical review of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to X. Y. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F.J., Li, G., Jin, C.W. et al. Aluminum-induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidant capacity in wheat root tips. Biol Plant 56, 89–96 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Additional key words