Skip to main content

Advertisement

Log in

Marker-free transgenic cucumber expressing Arabidopsis cbf1 gene confers chilling stress tolerance

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Marker-free transgenic cucumber (Cucumis sativus L.) cv. Poinsett 76 SR plants were produced by Agrobacterium mediated transformation. A transformation efficiency of 1.62 was observed on using Agrobacterium tumefaciens strain LBA4404 harbouring Arabidopsis cbf1 gene driven by the inducible promoter RD29A in a binary vector system pCAMBIA. Transgene integration and single copy insert in transgenic cucumber was confirmed by polymerase chain reaction (PCR) and Southern blot analysis in T0 lines and also confirmed marker-free status in T1 generation. Transgene expression was confirmed by reverse transcription (RT)-PCR in T1 generation transgenic cucumber and advanced to T2 generation. Upon exposure to chilling stress (4 °C), the T2 generation transgenic plants survived up to 36 h; however, wild-type plants could not survive and gradually died. A significant decrease in membrane injury index (MII), increase in activities of antioxidant enzymes (SOD and CAT), free proline content and relative water content (RWC) in the leaves were observed in transgenic cucumber as compared to wild-type under chilling stress. Thus, the transgenic cucumber plants expressing Arabidopsis cbf1 gene conferred protection against chilling stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP:

6-benzylaminopurine

CAT:

catalase

CBF1:

c-repeat binding factor-1

CTAB:

cetyltrimethylammonium bromide

IBA:

indole-3-butyric acid

MII:

membrane injury index

MS:

Murashige and Skoog’s medium

NBT:

nitroblue tetrazolium chloride

nptII:

neomycin phosphotransferase-II

RT-PCR:

reverse transcription polymerase chain reaction

RWC:

relative water content

SOD:

superoxide dismutase

References

  • Afolabi, A.S., Worland, B., Snape, J., Vain, P.: Multiple T-DNA co-cultivation as a method of producing markerfree (clean gene) transgenic rice (Oryza sativa L.) plant. — Afr. J. Biotechnol. 4: 531–540, 2005.

    CAS  Google Scholar 

  • Ananthakrishnan, G., Xia, X., Elman, C., Singer, S., Paris, H.S., Galon, A., Gaba, V.: Shoot production in squash (Cucurbita pepo) by in vitro organogenesis. — Plant Cell Rep. 21: 739–746, 2003.

    PubMed  CAS  Google Scholar 

  • Baek, K., Skinner, D.Z., Ling, P., Chen, X.: Molecular structure and organization of the wheat genomic manganese superoxide dismutase gene. — Genome 49: 209–218, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Baker, S.S., Wilhelm, K.S., Thomoshow, M.F.: The 5′-region of Arabidopsis thaliana COR15a has cis-acting elements that confer cold-, drought- and ABA regulated gene expression. — Plant mol. Biol. 24: 701–713, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Beck, E.H., Fetitig, S., Knake, C., Hartig, K., Bhattarai, T.: Specific and unspecific responses of plants to cold and drought stress. — J. Biosci. 32: 501–510, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, R., Davies, J.: Mechanisms of antibiotic resistance in bacteria. — Annu. Rev. Biochem. 42: 471–506, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.: A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Brasileiro, A.C.M.: Neomicina fosfotransferase II (NPT II). — In: Brasileiro A.C.M., Carneiro V.T.C. (ed.): Manual de Transformação Genética de Plantas. Pp. 143–154. Embrapa-SPI/Embrapa-Cenargen, Brasília 1998.

    Google Scholar 

  • Chee, P.P.: Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. — Plant Cell Rep. 9: 245–248, 1990.

    Article  CAS  Google Scholar 

  • Chee, P.P., Slightom, J.L.: Transfer and expression of cucumber mosaic virus coat protein gene in the genome of Cucumis sativus L. — J. amer. Soc. hort. Sci. 116: 1098–1102, 1991.

    CAS  Google Scholar 

  • Choi, P.S., Soh, W.Y., Kim, Y.S., Yoo, O.J., Liu, J.R.: Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. — Plant Cell Rep. 13: 344–348, 1994.

    Article  CAS  Google Scholar 

  • Compton, M.E.: Interactions between explant size and cultivar affects shoot organogenic competence of watermelon cotyledons. — Hort. Sci. 35: 749–750, 2000.

    Google Scholar 

  • Djilianov, D., Georgieva, T., Moyankova, D., Atanassov, A., Shinozaki, K., Smeeken, S.C.M., Verma, D.P.S., Murata, N.: Improved abiotic stress tolerance in plants by accumulation of osmoprotactents — gene transfer approach. — Biotechnol. Biotechnol. Equip. 19: 63–71, 2005.

    CAS  Google Scholar 

  • Dibax, R., Deschamps, C., Bespalhok Filho, J.C., Vieira, L.G.E., Molinari, H.B.C., De Campos, M.K.F., Quoirin, M.: Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene. — Biol. Plant. 54: 6–12, 2010.

    Article  Google Scholar 

  • Doyle, J.J., Doyle, J.I.: Isolation of plant DNA from fresh tissue. — Phytochem. Bull. Bot. Soc. Amer. 19: 11–15, 1987.

    Google Scholar 

  • Fadzilla, N.M., Finch, P.R., Burdon, R.H.: Salinity, oxidative stress and antioxidant responses in shoot culture of rice. — J. exp. Bot. 48: 325–331, 1997.

    Article  CAS  Google Scholar 

  • Ganapathi, A., Perl-Treves, R.: Agrobacterium-mediated transformation in Cucumis sativus L. via direct organogenesis. — Acta Hort. 510: 405–407, 2000.

    Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. — Plant Physiol. 124: 1854–1865, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F.: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. — Plant J. 16: 433–442, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Goyary, D., Gupta, N., Khare, N., Anandhan, S., Rathore, M., Ahmed, Z.: In vitro propagation of long melon var. Karnal selection (Cucumis melo L.) from shoot tip. — Int. J. appl. agr. Res. 5: 55–62, 2010.

    Google Scholar 

  • Hoekstra, F.A., Golovina, E.A., Buitink, J.: Mechanism of plant desiccation tolerance. — Trends Plant Sci. 6: 1360–1385, 2001.

    Article  Google Scholar 

  • Hsieh, T.H., Lee, J.T., Charng, Y.Y., Chan, M.T.: Tomato plants ectopically expressing Arabidopsis cbf1 show enhanced resistance to water deficit stress. — Plant Physiol. 130: 618–626, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 over expression induces COR genes and enhances freezing tolerance. — Sciences 280: 104–106, 1998.

    Article  CAS  Google Scholar 

  • Jaleel, C.A., Gopi, R., Manivannan, P., Panneerselvam, R.: Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. — Turk. J. Bot. 31: 245–251, 2007.

    Google Scholar 

  • Jia, G.X., Zhu, Z.Q., Chang, F.Q., Li, Y.X.: Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. — Plant Cell Rep. 21: 141–146, 2002.

    Article  CAS  Google Scholar 

  • Kavi, K.P.B., Hong, Z., Miao, G.H., Hu, C.A.A., Verma, D.P.S.: Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. — Plant. Physiol. 108: 1387–1394, 1995.

    Google Scholar 

  • Khan, R.S., Nakamura, I., Mii, M.: Production and selection of marker-free transgenic plants of Petunia hybrida using sitespecific recombination. — Biol. Plant. 54: 265–271, 2010.

    Article  CAS  Google Scholar 

  • Moaed, A., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P.: Protective role of antioxidant enzymes under high temperature stress. — Plant Sci. 117: 382–388, 2006.

    Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Nishibayashi, S., Kaneko, H., Hayakawa, T.: Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyls explants. — Plant Cell Rep. 15: 809–814, 1996.

    Article  CAS  Google Scholar 

  • Pearce, R.S.: Plant freezing and damage. — Ann. Bot. 87: 417–424, 2001.

    Article  CAS  Google Scholar 

  • Roberto, A., Gaxiola Jisheng, L., Undurraga, S., Dang, L.M., Allen, G.J., Alper, L.S., Fink, G.R.: Drought- and salttolerant plants result from overexpression of the AVP1 H1-pump. — Proc. nat. Acad. Sci. USA 98: 11444–11449, 2001.

    Article  Google Scholar 

  • Roy, R., Purty, R.S., Agrawal, V., Gupta, S.C.: Transformation of tomato cultivar “Pusa Ruby” with bspA gene from Populus tremula for drought tolerance. — Plant Cell Tissue Organ Cult. 84: 55–67, 2006.

    Article  CAS  Google Scholar 

  • Sarad, N., Rathore, M., Singh, N.K., Kumar, N.: Genetically engineered tomatoes: new vista for sustainable agriculture in high altitude regions. — In: Fisher, T. et al. (ed.): 4th International Crop Science Congress. The Regional Institute, Ltd., Gosford — Brisbane, 2004.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: a Laboratory Manual. — Cold Spring Harbor Laboratory Press, Cold Spring Harbor — New York 1989.

    Google Scholar 

  • Scandalios, J.G.: Oxygen stress and superoxide dismutase. — Plant Physiol. 10: 17–12, 1993.

    Google Scholar 

  • Selvaraj, N.: In vitro culture and Agrobacterium mediated genetic transformation in cucumber (Cucumis sativus L.). — PhD thesis, Bharthidasan University, Trichurapalli 2002.

    Google Scholar 

  • Shah, P., Singh, N.K., Khare, N., Rathore, M., Anandhan, S., Arif, M., Singh, R.K., Das, S.C., Ahmed, Z., Kumar, N.: Agrobacterium mediated genetic transformation of summer squash ( Cucurbita pepo L. cv. Australian Green) with cbf-1 using a two vector system. — Plant Cell Tissue Organ Cult. 95: 363–371, 2008.

    Article  CAS  Google Scholar 

  • Soniya, E.V., Das, M.R.: In vitro organogenesis and genetic transformation in popular Cucumis sativus L. through Agrobacterium tumefaciens. — Ind. J. exp. Biol. 40: 329–333, 2002.

    CAS  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. — Proc. nat. Acad. Sci. USA 94: 1035–1040, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M.F.: So what’s new in the field of plant cold acclimation? Lots! — Plant Physiol. 125: 89–93, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, M., Joseph, R.A., Steponkus, P.L.: Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesion. — Plant Physiol. 109: 15–30, 1995.

    PubMed  CAS  Google Scholar 

  • Vasudevan, A., Silvaraj, A., Ganapathi, A., Choi, C.W.: Agrobacterium mediated genetic transformation in cucumber (Cucumis sativus L.). — Amer. J. Biotechnol. Biochem. 3: 24–32, 2007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to DRDO HQ, Ministry of Defence, Govt. of India for the financial assistance. The generous gift of the co-transformation constructs by Dr. A.K. Sharma (Centre for Plant Molecular Biology, University of Delhi, South Campus, India) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Goyary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Rathore, M., Goyary, D. et al. Marker-free transgenic cucumber expressing Arabidopsis cbf1 gene confers chilling stress tolerance. Biol Plant 56, 57–63 (2012). https://doi.org/10.1007/s10535-012-0016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0016-3

Additional key words

Navigation